期刊论文详细信息
Radiation Oncology
3 Tesla multiparametric MRI for GTV-definition of Dominant Intraprostatic Lesions in patients with Prostate Cancer – an interobserver variability study
Cordula A Jilg3  Anca L Grosu1  Simon Kirste1  Stefan Knippen1  Jutta Scholber1  Karl Henne1  Natalja Volegova-Neher1  Christian Doll1  Tobias Fechter1  Ursula Nestle1  Hans Christian Rischke2 
[1] Department of Radiation Oncology, University of Freiburg, Robert Koch Str. 3, 79106 Freiburg, Germany;Department of Nuclear Medicine, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany;Department of Urology, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
关键词: Interobserver variability;    3 Tesla MRI;    Simultaneous integrated boost;    Focal dose escalation;    Gross tumor volume;    Prostate cancer;   
Others  :  1153331
DOI  :  10.1186/1748-717X-8-183
 received in 2013-02-21, accepted in 2013-07-20,  发布年份 2013
PDF
【 摘 要 】

Purpose

To evaluate the interobserver variability of gross tumor volume (GTV) - delineation of Dominant Intraprostatic Lesions (DIPL) in patients with prostate cancer using published MRI criteria for multiparametric MRI at 3 Tesla by 6 different observers.

Material and methods

90 GTV-datasets based on 15 multiparametric MRI sequences (T2w, diffusion weighted (DWI) and dynamic contrast enhanced (DCE)) of 5 patients with prostate cancer were generated for GTV-delineation of DIPL by 6 observers. The reference GTV-dataset was contoured by a radiologist with expertise in diagnostic imaging of prostate cancer using MRI. Subsequent GTV-delineation was performed by 5 radiation oncologists who received teaching of MRI-features of primary prostate cancer before starting contouring session. GTV-datasets were contoured using Oncentra Masterplan® and iplan® Net. For purposes of comparison GTV-datasets were imported to the Artiview® platform (Aquilab®), GTV-values and the similarity indices or Kappa indices (KI) were calculated with the postulation that a KI > 0.7 indicates excellent, a KI > 0.6 to < 0.7 substantial and KI > 0.5 to < 0.6 moderate agreement. Additionally all observers rated difficulties of contouring for each MRI-sequence using a 3 point rating scale (1 = easy to delineate, 2 = minor difficulties, 3 = major difficulties).

Results

GTV contouring using T2w (KI-T2w = 0.61) and DCE images (KI-DCE = 0.63) resulted in substantial agreement. GTV contouring using DWI images resulted in moderate agreement (KI-DWI = 0.51). KI-T2w and KI-DCE was significantly higher than KI-DWI (p = 0.01 and p = 0.003). Degree of difficulty in contouring GTV was significantly lower using T2w and DCE compared to DWI-sequences (both p < 0.0001). Analysis of delineation differences revealed inadequate comparison of functional (DWI, DCE) to anatomical sequences (T2w) and lack of awareness of non-specific imaging findings as a source of erroneous delineation.

Conclusions

Using T2w and DCE sequences at 3 Tesla for GTV-definition of DIPL in prostate cancer patients by radiation oncologists with knowledge of MRI features results in substantial agreement compared to an experienced MRI-radiologist, but for radiotherapy purposes higher KI are desirable, strengthen the need for expert surveillance. DWI sequence for GTV delineation was considered as difficult in application.

【 授权许可】

   
2013 Rischke et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150407075733396.pdf 1822KB PDF download
Figure 9. 60KB Image download
Figure 8. 88KB Image download
Figure 7. 57KB Image download
Figure 6. 58KB Image download
Figure 5. 49KB Image download
Figure 4. 62KB Image download
Figure 3. 33KB Image download
Figure 2. 34KB Image download
Figure 1. 76KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

【 参考文献 】
  • [1]Budaus L, Bolla M, Bossi A, Cozzarini C, Crook J, Widmark A, et al.: Functional outcomes and complications following radiation therapy for prostate cancer: a critical analysis of the literature. Eur Urol 2012, 61(1):112-127. PubMed PMID: 22001105
  • [2]Zelefsky MJ, Levin EJ, Hunt M, Yamada Y, Shippy AM, Jackson A, et al.: Incidence of late rectal and urinary toxicities after three-dimensional conformal radiotherapy and intensity-modulated radiotherapy for localized prostate cancer. Int J Radiat Oncol Biol Phys 2008, 70(4):1124-1129. PubMed PMID: 18313526
  • [3]Al-Mamgani A, Heemsbergen WD, Peeters ST, Lebesque JV: Role of intensity-modulated radiotherapy in reducing toxicity in dose escalation for localized prostate cancer. Int J Radiat Oncol Biol Phys 2009, 73(3):685-691. PubMed PMID: 18718725
  • [4]Cahlon O, Zelefsky MJ, Shippy A, Chan H, Fuks Z, Yamada Y, et al.: Ultra-high dose (86.4 Gy) IMRT for localized prostate cancer: toxicity and biochemical outcomes. Int J Radiat Oncol Biol Phys 2008, 71(2):330-337.
  • [5]Bott SR, Ahmed HU, Hindley RG, Abdul-Rahman A, Freeman A, Emberton M: The index lesion and focal therapy: an analysis of the pathological characteristics of prostate cancer. BJU Int 2010, 106(11):1607-1611. PubMed PMID: 20553262
  • [6]Karavitakis M, Ahmed HU, Abel PD, Hazell S, Winkler MH: Tumor focality in prostate cancer: implications for focal therapy. Nat Rev Clin Oncol 2011, 8(1):48-55. PubMed PMID: 21116296
  • [7]Viani GA, Stefano EJ, Afonso SL: Higher-than-conventional radiation doses in localized prostate cancer treatment: a meta-analysis of randomized, controlled trials. Int J Radiat Oncol Biol Phys 2009, 74(5):1405-1418. PubMed PMID: 19616743
  • [8]Pinkawa M, Holy R, Piroth MD, Fischedick K, Schaar S, Szekely-Orban D, et al.: Consequential late effects after radiotherapy for prostate cancer - a prospective longitudinal quality of life study. Radiat Oncol 2010, 5:27. PubMed PMID: 20377874. PubMed Central PMCID: PMC2857853 BioMed Central Full Text
  • [9]Cellini N, Morganti AG, Mattiucci GC, Valentini V, Leone M, Luzi S, et al.: Analysis of intraprostatic failures in patients treated with hormonal therapy and radiotherapy: implications for conformal therapy planning. Int J Radiat Oncol Biol Phys 2002, 53(3):595-599. PubMed PMID: 12062602
  • [10]Pucar D, Hricak H, Shukla-Dave A, Kuroiwa K, Drobnjak M, Eastham J, et al.: Clinically significant prostate cancer local recurrence after radiation therapy occurs at the site of primary tumor: magnetic resonance imaging and step-section pathology evidence. Int J Radiat Oncol Biol Phys 2007, 69(1):62-69. PubMed PMID: 17707266
  • [11]Niyazi M, Bartenstein P, Belka C, Ganswindt U: Choline PET based dose-painting in prostate cancer–modelling of dose effects. Radiat Oncol 2010, 5:23. PubMed PMID: 20298546. PubMed Central PMCID: PMC2848061 BioMed Central Full Text
  • [12]Scheidler J, Hricak H, Vigneron DB, Yu KK, Sokolov DL, Huang LR, et al.: Prostate cancer: localization with three-dimensional proton MR spectroscopic imaging–clinicopathologic study. Radiology 1999, 213(2):473-480. PubMed PMID: 10551229
  • [13]Engelbrecht MR, Huisman HJ, Laheij RJ, Jager GJ, van Leenders GJ, van Hulsbergen-Van De Kaa CA, et al.: Discrimination of prostate cancer from normal peripheral zone and central gland tissue by using dynamic contrast-enhanced MR imaging. Radiology 2003, 229(1):248-254. PubMed PMID: 12944607
  • [14]Futterer JJ, Heijmink SW, Scheenen TW, Veltman J, Huisman HJ, Vos P, et al.: Prostate cancer localization with dynamic contrast-enhanced MR imaging and proton MR spectroscopic imaging. Radiology 2006, 241(2):449-458. PubMed PMID: 16966484
  • [15]Graser A, Heuck A, Sommer B, Massmann J, Scheidler J, Reiser M, et al.: Per-sextant localization and staging of prostate cancer: correlation of imaging findings with whole-mount step section histopathology. AJR Am J Roentgenol 2007, 188(1):84-90. PubMed PMID: 17179349
  • [16]Heijmink SW, Futterer JJ, Hambrock T, Takahashi S, Scheenen TW, Huisman HJ, et al.: Prostate cancer: body-array versus endorectal coil MR imaging at 3 T–comparison of image quality, localization, and staging performance. Radiology 2007, 244(1):184-195. PubMed PMID: 17495178
  • [17]Haider MA, van der Kwast TH, Tanguay J, Evans AJ, Hashmi AT, Lockwood G, et al.: Combined T2-weighted and diffusion-weighted MRI for localization of prostate cancer. AJR Am J Roentgenol 2007, 189(2):323-328. PubMed PMID: 17646457
  • [18]Mazaheri Y, Shukla-Dave A, Hricak H, Fine SW, Zhang J, Inurrigarro G, et al.: Prostate cancer: identification with combined diffusion-weighted MR imaging and 3D 1H MR spectroscopic imaging–correlation with pathologic findings. Radiology 2008, 246(2):480-488. PubMed PMID: 18227542
  • [19]Puech P, Potiron E, Lemaitre L, Leroy X, Haber GP, Crouzet S, et al.: Dynamic contrast-enhanced-magnetic resonance imaging evaluation of intraprostatic prostate cancer: correlation with radical prostatectomy specimens. Urology 2009, 74(5):1094-1099. PubMed PMID: 19773038
  • [20]Riches SF, Payne GS, Morgan VA, Sandhu S, Fisher C, Germuska M, et al.: MRI in the detection of prostate cancer: combined apparent diffusion coefficient, metabolite ratio, and vascular parameters. AJR Am J Roentgenol 2009, 193(6):1583-1591. PubMed PMID: 19933651
  • [21]Turkbey B, Pinto PA, Mani H, Bernardo M, Pang Y, McKinney YL, et al.: Prostate cancer: value of multiparametric MR imaging at 3 T for detection–histopathologic correlation. Radiology 2010, 255(1):89-99. PubMed PMID: 20308447. PubMed Central PMCID: PMC2843833
  • [22]Turkbey B, Mani H, Aras O, Rastinehad AR, Shah V, Bernardo M, et al.: Correlation of magnetic resonance imaging tumor volume with histopathology. J Urol 2012, 188(4):1157-1163. PubMed PMID: 22901591
  • [23]Akin O, Sala E, Moskowitz CS, Kuroiwa K, Ishill NM, Pucar D, et al.: Transition zone prostate cancers: features, detection, localization, and staging at endorectal MR imaging. Radiology 2006, 239(3):784-792. PubMed PMID: 16569788
  • [24]Yakar D, Debats OA, Bomers JG, Schouten MG, Vos PC, van Lin E, et al.: Predictive value of MRI in the localization, staging, volume estimation, assessment of aggressiveness, and guidance of radiotherapy and biopsies in prostate cancer. J Magn Reson Imaging 2012, 35(1):20-31. PubMed PMID: 22174000
  • [25]Sosna J, Pedrosa I, Dewolf WC, Mahallati H, Lenkinski RE, Rofsky NM: MR imaging of the prostate at 3 Tesla: comparison of an external phased-array coil to imaging with an endorectal coil at 1.5 Tesla. Acad Radiol 2004, 11(8):857-862.
  • [26]Rischke HC, Schafer AO, Nestle U, Volegova-Neher N, Henne K, Benz MR, et al.: Detection of local recurrent prostate cancer after radical prostatectomy in terms of salvage radiotherapy using dynamic contrast enhanced-MRI without Endorectal coil. Radiat Oncol 2012, 7(1):185. PubMed PMID: 23114282 BioMed Central Full Text
  • [27]Barentsz JO, Richenberg J, Clements R, Choyke P, Verma S, Villeirs G, et al.: ESUR prostate MR guidelines 2012. Eur Radiol 2012, 22(4):746-757. PubMed PMID: 22322308. PubMed Central PMCID: PMC3297750
  • [28]Fonteyne V, Villeirs G, Speleers B, De Neve W, De Wagter C, Lumen N, et al.: Intensity-modulated radiotherapy as primary therapy for prostate cancer: report on acute toxicity after dose escalation with simultaneous integrated boost to intraprostatic lesion. Int J Radiat Oncol Biol Phys 2008, 72(3):799-807. PubMed PMID: 18407430
  • [29]Singh AK, Guion P, Sears-Crouse N, Ullman K, Smith S, Albert PS, et al.: Simultaneous integrated boost of biopsy proven, MRI defined dominant intra-prostatic lesions to 95 Gray with IMRT: early results of a phase I NCI study. Radiat Oncol 2007, 2:36. PubMed PMID: 17877821. PubMed Central PMCID: PMC2075521 BioMed Central Full Text
  • [30]van Lin EN, Futterer JJ, Heijmink SW, van der Vight LP, Hoffmann AL, van Kollenburg P, et al.: IMRT boost dose planning on dominant intraprostatic lesions: gold marker-based three-dimensional fusion of CT with dynamic contrast-enhanced and 1H-spectroscopic MRI. Int J Radiat Oncol Biol Phys 2006, 65(1):291-303. PubMed PMID: 16618584
  • [31]Cruz M, Tsuda K, Narumi Y, Kuroiwa Y, Nose T, Kojima Y, et al.: Characterization of low-intensity lesions in the peripheral zone of prostate on pre-biopsy endorectal coil MR imaging. Eur Radiol 2002, 12(2):357-365. PubMed PMID: 11870434
  • [32]Bonekamp D, Jacobs MA, El-Khouli R, Stoianovici D, Macura KJ: Advancements in MR imaging of the prostate: from diagnosis to interventions. Radiographics 2011, 31(3):677-703. PubMed PMID: 21571651.PubMed Central PMCID: PMC3093638
  • [33]Fuchsjager M, Shukla-Dave A, Akin O, Barentsz J, Hricak H: Prostate cancer imaging. Acta Radiol 2008, 49(1):107-120. PubMed PMID: 18210320
  • [34]Claus FG, Hricak H, Hattery RR: Pretreatment evaluation of prostate cancer: role of MR imaging and 1H MR spectroscopy. Radiographics 2004, 24(Suppl 1):S167-S180. PubMed PMID: 15486239
  • [35]Hosseinzadeh K, Schwarz SD: Endorectal diffusion-weighted imaging in prostate cancer to differentiate malignant and benign peripheral zone tissue. J Magn Reson Imaging 2004, 20(4):654-661. PubMed PMID: 15390142
  • [36]Tamada T, Sone T, Jo Y, Toshimitsu S, Yamashita T, Yamamoto A, et al.: Apparent diffusion coefficient values in peripheral and transition zones of the prostate: comparison between normal and malignant prostatic tissues and correlation with histologic grade. J Magn Reson Imaging 2008, 28(3):720-726. PubMed PMID: 18777532
  • [37]Rosenkrantz AB, Kopec M, Kong X, Melamed J, Dakwar G, Babb JS, et al.: Prostate cancer vs. post-biopsy hemorrhage: diagnosis with T2- and diffusion-weighted imaging. J Magn Reson Imaging 2010, 31(6):1387-1394.
  • [38]Sciarra A, Panebianco V, Ciccariello M, Salciccia S, Lisi D, Osimani M, et al.: Magnetic resonance spectroscopic imaging (1H-MRSI) and dynamic contrast-enhanced magnetic resonance (DCE-MRI): pattern changes from inflammation to prostate cancer. Cancer Invest 2010, 28(4):424-432. PubMed PMID: 20073578
  • [39]Futterer JJ, Engelbrecht MR, Huisman HJ, Jager GJ, Hulsbergen-van De Kaa CA, Witjes JA, et al.: Staging prostate cancer with dynamic contrast-enhanced endorectal MR imaging prior to radical prostatectomy: experienced versus less experienced readers. Radiology 2005, 237(2):541-549. PubMed PMID: 16244263
  • [40]Alonzi R, Taylor NJ, Stirling JJ, d'Arcy JA, Collins DJ, Saunders MI, et al.: Reproducibility and correlation between quantitative and semiquantitative dynamic and intrinsic susceptibility-weighted MRI parameters in the benign and malignant human prostate. J Magn Reson Imaging 32(1):155-164. PubMed PMID: 20578023
  • [41]Vach W: The dependence of Cohen's kappa on the prevalence does not matter. J Clin Epidemiol 2005, 58(7):655-661. PubMed PMID: 15939215
  • [42]Zijdenbos AP, Dawant BM, Margolin RA, Palmer AC: Morphometric analysis of white matter lesions in MR images: method and validation. IEEE Trans Med Imaging 1994, 13(4):716-724. PubMed PMID: 18218550
  • [43]Landis JR, Koch GG: An application of hierarchical kappa-type statistics in the assessment of majority agreement among multiple observers. Biometrics 1977, 33(2):363-374. PubMed PMID: 884196
  • [44]Pinkawa M, Piroth MD, Holy R, Klotz J, Djukic V, Corral NE, et al.: Dose-escalation using intensity-modulated radiotherapy for prostate cancer - evaluation of quality of life with and without (18)F-choline PET-CT detected simultaneous integrated boost. Radiat Oncol 2012, 7:14. PubMed PMID: 22289620; PubMed Central PMCID: PMC3299580 BioMed Central Full Text
  • [45]Lips IM, van der Heide UA, Haustermans K, van Lin EN, Pos F, Franken SP, et al.: Single blind randomized phase III trial to investigate the benefit of a focal lesion ablative microboost in prostate cancer (FLAME-trial): study protocol for a randomized controlled trial. Trials 2011, 12:255. PubMed PMID: 22141598. PubMed Central PMCID: PMC3286435 BioMed Central Full Text
  • [46]Miao H, Fukatsu H, Ishigaki T: Prostate cancer detection with 3-T MRI: comparison of diffusion-weighted and T2-weighted imaging. Eur J Radiol 2007, 61(2):297-302. PubMed PMID: 17085002
  • [47]Padhani AR, Gapinski CJ, Macvicar DA, Parker GJ, Suckling J, Revell PB, et al.: Dynamic contrast enhanced MRI of prostate cancer: correlation with morphology and tumour stage, histological grade and PSA. Clin Radiol 2000, 55(2):99-109. PubMed PMID: 10657154
  • [48]White S, Hricak H, Forstner R, Kurhanewicz J, Vigneron DB, Zaloudek CJ, et al.: Prostate cancer: effect of postbiopsy hemorrhage on interpretation of MR images. Radiology 1995, 195(2):385-390. PubMed PMID: 7724756
  • [49]Groenendaal G, van den Berg CA, Korporaal JG, Philippens ME, Luijten PR, van Vulpen M, et al.: Simultaneous MRI diffusion and perfusion imaging for tumor delineation in prostate cancer patients. Radiother Oncol 2010, 95(2):185-190. PubMed PMID: 20231041
  • [50]Chen M, Hricak H, Kalbhen CL, Kurhanewicz J, Vigneron DB, Weiss JM, et al.: Hormonal ablation of prostatic cancer: effects on prostate morphology, tumor detection, and staging by endorectal coil MR imaging. AJR Am J Roentgenol 1996, 166(5):1157-1163. PubMed PMID: 8615261
  • [51]Jung JA, Coakley FV, Vigneron DB, Swanson MG, Qayyum A, Weinberg V, et al.: Prostate depiction at endorectal MR spectroscopic imaging: investigation of a standardized evaluation system. Radiology 2004, 233(3):701-708. PubMed PMID: 15564406
  • [52]Martin S, Rodrigues G, Patil N, Bauman G, D'Souza D, Sexton T, et al.: A multiphase validation of atlas-based automatic and semiautomatic segmentation strategies for prostate MRI. Int J Radiat Oncol Biol Phys 2013, 85(1):95-100. PubMed PMID: 22572076
  • [53]Groenendaal G, Borren A, Moman MR, Monninkhof E, van Diest PJ, Philippens ME, et al.: Pathologic validation of a model based on diffusion-weighted imaging and dynamic contrast-enhanced magnetic resonance imaging for tumor delineation in the prostate peripheral zone. Int J Radiat Oncol Biol Phys 2012, 82(3):e537-e544. PubMed PMID: 22197085
  • [54]Rasch C, Steenbakkers R, van Herk M: Target definition in prostate, head, and neck. Semin Radiat Oncol 2005, 15(3):136-145. PubMed PMID: 15983939
  • [55]Khoo VS, Joon DL: New developments in MRI for target volume delineation in radiotherapy. Br J Radiol 2006, 79 Spec No 1:S2-S15. PubMed PMID: 16980682
  • [56]Moeckli R, Sozzi WJ, Mirimanoff RO, Ozsahin M, Zouhair A, Valley JF, et al.: Physical considerations on discrepancies in target volume delineation. Z Med Phys 2009, 19(4):224-235. PubMed PMID: 19962081
  • [57]Nyholm T, Jonsson J, Soderstrom K, Bergstrom P, Carlberg A, Frykholm G, et al.: Variability in prostate and seminal vesicle delineations defined on magnetic resonance images, a multi-observer, -center and -sequence study. Radiat Oncol 2013, 8(1):126. PubMed PMID: 23706145 BioMed Central Full Text
  • [58]Farsad M, Schiavina R, Castellucci P, Nanni C, Corti B, Martorana G, et al.: Detection and localization of prostate cancer: correlation of (11)C-choline PET/CT with histopathologic step-section analysis. J Nucl Med 2005, 46(10):1642-1649. PubMed PMID: 16204714
  • [59]Picchio M, Giovannini E, Messa C: The role of PET/computed tomography scan in the management of prostate cancer. Curr Opin Urol 2011, 21(3):230-236. PubMed PMID: 21378572
  • [60]Bundschuh RA, Wendl CM, Weirich G, Eiber M, Souvatzoglou M, Treiber U, et al.: Tumour volume delineation in prostate cancer assessed by [(11)C]choline PET/CT: validation with surgical specimens. Eur J Nucl Med Mol Imaging 2013, 40(6):824-831. PubMed PMID: 23389430
  • [61]Ambrosini V, Fani M, Fanti S, Forrer F, Maecke HR: Radiopeptide imaging and therapy in Europe. J Nucl Med 2011, 52(Suppl 2):42S-55S. PubMed PMID: 22144555
  文献评价指标  
  下载次数:70次 浏览次数:27次