期刊论文详细信息
Nutrition & Metabolism
Regulation of reverse cholesterol transport - a comprehensive appraisal of available animal studies
Uwe JF Tietge1  Wijtske Annema1 
[1] Top Institute Food and Nutrition, Wageningen, The Netherlands
关键词: reverse cholesterol transport;    Macrophages;    Liver;    Intestine;    High density lipoproteins;    Feces;    Efflux;    Cholesterol;    Bile;    Atherosclerosis;   
Others  :  819945
DOI  :  10.1186/1743-7075-9-25
 received in 2012-01-27, accepted in 2012-03-29,  发布年份 2012
PDF
【 摘 要 】

Plasma levels of high density lipoprotein (HDL) cholesterol are strongly inversely correlated to the risk of atherosclerotic cardiovascular disease. A major recognized functional property of HDL particles is to elicit cholesterol efflux and consequently mediate reverse cholesterol transport (RCT). The recent introduction of a surrogate method aiming at determining specifically RCT from the macrophage compartment has facilitated research on the different components and pathways relevant for RCT. The current review provides a comprehensive overview of studies carried out on macrophage-specific RCT including a quick reference guide of available data. Knowledge and insights gained on the regulation of the RCT pathway are summarized. A discussion of methodological issues as well as of the respective relevance of specific pathways for RCT is also included.

【 授权许可】

   
2012 Annema and Tietge; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140712020238691.pdf 1964KB PDF download
Figure 2. 18KB Image download
Figure 1. 57KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Castelli WP, Garrison RJ, Wilson PW, Abbott RD, Kalousdian S, Kannel WB: Incidence of coronary heart disease and lipoprotein cholesterol levels. The Framingham study. JAMA 1986, 256:2835-2838.
  • [2]Assmann G, Schulte H, von Eckardstein A, Huang Y: High-density lipoprotein cholesterol as a predictor of coronary heart disease risk. The PROCAM experience and pathophysiological implications for reverse cholesterol transport. Atherosclerosis 1996, 124:S11-S20.
  • [3]Di Angelantonio E, Sarwar N, Perry P, Kaptoge S, Ray KK, Thompson A, Wood AM, Lewington S, Sattar N, Packard CJ, et al.: Major lipids, apolipoproteins, and risk of vascular disease. JAMA 2009, 302:1993-2000.
  • [4]Walldius G, Jungner I, Holme I, Aastveit AH, Kolar W, Steiner E: High apolipoprotein B, low apolipoprotein A-I, and improvement in the prediction of fatal myocardial infarction (AMORIS study): a prospective study. Lancet 2001, 358:2026-2033.
  • [5]Lewis GF, Rader DJ: New insights into the regulation of HDL metabolism and reverse cholesterol transport. Circ Res 2005, 96:1221-1232.
  • [6]Linsel-Nitschke P, Tall AR: HDL as a target in the treatment of atherosclerotic cardiovascular disease. Nat Rev Drug Discov 2005, 4:193-205.
  • [7]Rader DJ, Pure E: Lipoproteins, macrophage function, and atherosclerosis: beyond the foam cell? Cell Metab 2005, 1:223-230.
  • [8]Li AC, Glass CK: The macrophage foam cell as a target for therapeutic intervention. Nat Med 2002, 8:1235-1242.
  • [9]Tabas I, Williams KJ, Boren J: Subendothelial lipoprotein retention as the initiating process in atherosclerosis: update and therapeutic implications. Circulation 2007, 116:1832-1844.
  • [10]Cuchel M, Rader DJ: Macrophage reverse cholesterol transport: key to the regression of atherosclerosis? Circulation 2006, 113:2548-2555.
  • [11]Wang X, Rader DJ: Molecular regulation of macrophage reverse cholesterol transport. Curr Opin Cardiol 2007, 22:368-372.
  • [12]Calabresi L, Franceschini G: Lecithin:cholesterol acyltransferase, high-density lipoproteins, and atheroprotection in humans. Trends Cardiovasc Med 2010, 20:50-53.
  • [13]Barter PJ, Brewer HB Jr, Chapman MJ, Hennekens CH, Rader DJ, Tall AR: Cholesteryl ester transfer protein: a novel target for raising HDL and inhibiting atherosclerosis. Arterioscler Thromb Vasc Biol 2003, 23:160-167.
  • [14]Jolley CD, Woollett LA, Turley SD, Dietschy JM: Centripetal cholesterol flux to the liver is dictated by events in the peripheral organs and not by the plasma high density lipoprotein or apolipoprotein A-I concentration. J Lipid Res 1998, 39:2143-2149.
  • [15]Osono Y, Woollett LA, Marotti KR, Melchior GW, Dietschy JM: Centripetal cholesterol flux from extrahepatic organs to the liver is independent of the concentration of high density lipoprotein-cholesterol in plasma. Proc Natl Acad Sci USA 1996, 93:4114-4119.
  • [16]Xie C, Turley SD, Dietschy JM: Centripetal cholesterol flow from the extrahepatic organs through the liver is normal in mice with mutated Niemann-Pick type C protein (NPC1). J Lipid Res 2000, 41:1278-1289.
  • [17]Amar MJ, D'Souza W, Turner S, Demosky S, Sviridov D, Stonik J, Luchoomun J, Voogt J, Hellerstein M, Remaley AT: 5A apolipoprotein mimetic peptide promotes cholesterol efflux and reduces atherosclerosis in mice. J Pharmacol Exp Ther 2010, 334:634-641.
  • [18]Zhang Y, Zanotti I, Reilly MP, Glick JM, Rothblat GH, Rader DJ: Overexpression of apolipoprotein A-I promotes reverse transport of cholesterol from macrophages to feces in vivo. Circulation 2003, 108:661-663.
  • [19]Briand F, Thieblemont Q, Muzotte E, Sulpice T: An alternative method to measure in vivo reverse cholesterol transport in hyperlipidemic hamsters. Circulation 2011, 124:A11835.
  • [20]Huang ZH, Lin CY, Oram JF, Mazzone T: Sterol efflux mediated by endogenous macrophage ApoE expression is independent of ABCA1. Arterioscler Thromb Vasc Biol 2001, 21:2019-2025.
  • [21]Bernard DW, Rodriguez A, Rothblat GH, Glick JM: cAMP stimulates cholesteryl ester clearance to high density lipoproteins in J7774 macrophages. J Biol Chem 1991, 266:710-716.
  • [22]Mazzone T, Pustelnikas L, Reardon CA: Post-translational regulation of macrophage apoprotein E production. J Biol Chem 1992, 267:1081-1087.
  • [23]Huang ZH, Fitzgerald ML, Mazzone T: Distinct cellular loci for the ABCA1-dependent and ABCA1-independent lipid efflux mediated by endogenous apolipoprotein E expression. Arterioscler Thromb Vasc Biol 2006, 26:157-162.
  • [24]Zanotti I, Pedrelli M, Poti F, Stomeo G, Gomaraschi M, Calabresi L, Bernini F: Macrophage, but not systemic, apolipoprotein E is necessary for macrophage reverse cholesterol transport in vivo. Arterioscler Thromb Vasc Biol 2011, 31:74-80.
  • [25]Marathe C, Bradley MN, Hong C, Lopez F, Ruiz de Galarreta CM, Tontonoz P, Castrillo A: The arginase II gene is an anti-inflammatory target of liver X receptor in macrophages. J Biol Chem 2006, 281:32197-32206.
  • [26]Pourcet B, Feig JE, Vengrenyuk Y, Hobbs AJ, Kepka-Lenhart D, Garabedian MJ, Morris SM Jr, Fisher EA, Pineda-Torra I: LXRalpha regulates macrophage arginase 1 through PU.1 and interferon regulatory factor 8. Circ Res 2011, 109:492-501.
  • [27]Malik P, Smith JD: A novel in vivo assay for reverse cholesterol transport. Arteriosclerosis Thrombosis and Vascular Biology 2009, 29:E46.
  • [28]Weibel GL, Hayes S, Wilson A, Phillips MC, Billheimer J, Rader DJ, Rothblat GH: Novel in vivo method for measuring cholesterol mass flux in peripheral macrophages. Arterioscler Thromb Vasc Biol 2011, 31:2865-2871.
  • [29]Zhao B, Song J, Chow WN, St Clair RW, Rudel LL, Ghosh S: Macrophage-specific transgenic expression of cholesteryl ester hydrolase significantly reduces atherosclerosis and lesion necrosis in Ldlr mice. J Clin Invest 2007, 117:2983-2992.
  • [30]Wang MD, Franklin V, Marcel YL: In vivo reverse cholesterol transport from macrophages lacking ABCA1 expression is impaired. Arterioscler Thromb Vasc Biol 2007, 27:1837-1842.
  • [31]Wang X, Collins HL, Ranalletta M, Fuki IV, Billheimer JT, Rothblat GH, Tall AR, Rader DJ: Macrophage ABCA1 and ABCG1, but not SR-BI, promote macrophage reverse cholesterol transport in vivo. J Clin Invest 2007, 117:2216-2224.
  • [32]Out R, Jessup W, Le Goff W, Hoekstra M, Gelissen IC, Zhao Y, Kritharides L, Chimini G, Kuiper J, Chapman MJ, et al.: Coexistence of foam cells and hypocholesterolemia in mice lacking the ABC transporters A1 and G1. Circ Res 2008, 102:113-120.
  • [33]Zhao Y, Pennings M, Vrins CL, Calpe-Berdiel L, Hoekstra M, Kruijt JK, Ottenhoff R, Hildebrand RB, van der Sluis R, Jessup W, et al.: Hypocholesterolemia, foam cell accumulation, but no atherosclerosis in mice lacking ABC-transporter A1 and scavenger receptor BI. Atherosclerosis 2011, 218:314-322.
  • [34]Samyn H, Moerland M, van Gent T, van Haperen R, Grosveld F, van Tol A, de Crom R: Elevation of systemic PLTP, but not macrophage-PLTP, impairs macrophage reverse cholesterol transport in transgenic mice. Atherosclerosis 2009, 204:429-434.
  • [35]Tchoua U, D'Souza W, Mukhamedova N, Blum D, Niesor E, Mizrahi J, Maugeais C, Sviridov D: The effect of cholesteryl ester transfer protein overexpression and inhibition on reverse cholesterol transport. Cardiovasc Res 2008, 77:732-739.
  • [36]Rotllan N, Calpe-Berdiel L, Guillaumet-Adkins A, Suren-Castillo S, Blanco-Vaca F, Escola-Gil JC: CETP activity variation in mice does not affect two major HDL antiatherogenic properties: macrophage-specific reverse cholesterol transport and LDL antioxidant protection. Atherosclerosis 2008, 196:505-513.
  • [37]Weibel GL, Joshi MR, Alexander ET, Zhu P, Blair IA, Rothblat GH: Overexpression of human 15(S)-lipoxygenase-1 in RAW macrophages leads to increased cholesterol mobilization and reverse cholesterol transport. Arterioscler Thromb Vasc Biol 2009, 29:837-842.
  • [38]Smoak KA, Aloor JJ, Madenspacher J, Merrick BA, Collins JB, Zhu X, Cavigiolio G, Oda MN, Parks JS, Fessler MB: Myeloid differentiation primary response protein 88 couples reverse cholesterol transport to inflammation. Cell Metab 2010, 11:493-502.
  • [39]Moore RE, Navab M, Millar JS, Zimetti F, Hama S, Rothblat GH, Rader DJ: Increased atherosclerosis in mice lacking apolipoprotein A-I attributable to both impaired reverse cholesterol transport and increased inflammation. Circ Res 2005, 97:763-771.
  • [40]Alexander ET, Vedhachalam C, Sankaranarayanan S, de la Llera-Moya M, Rothblat GH, Rader DJ, Phillips MC: Influence of apolipoprotein A-I domain structure on macrophage reverse cholesterol transport in mice. Arterioscler Thromb Vasc Biol 2011, 31:320-327.
  • [41]Alexander ET, Weibel GL, Joshi MR, Vedhachalam C, de la Llera-Moya M, Rothblat GH, Phillips MC, Rader DJ: Macrophage reverse cholesterol transport in mice expressing ApoA-I Milano. Arterioscler Thromb Vasc Biol 2009, 29:1496-1501.
  • [42]Zanotti I, Maugeais C, Pedrelli M, Gomaraschi M, Salgam P, Calabresi L, Bernini F, Kempen H: The thienotriazolodiazepine Ro 11-1464 increases plasma apoA-I and promotes reverse cholesterol transport in human apoA-I transgenic mice. Br J Pharmacol 2011, 164:1642-1651.
  • [43]Navab M, Anantharamaiah GM, Reddy ST, Hama S, Hough G, Grijalva VR, Wagner AC, Frank JS, Datta G, Garber D, Fogelman AM: Oral D-4 F causes formation of pre-beta high-density lipoprotein and improves high-density lipoprotein-mediated cholesterol efflux and reverse cholesterol transport from macrophages in apolipoprotein E-null mice. Circulation 2004, 109:3215-3220.
  • [44]Bielicki JK, Zhang H, Cortez Y, Zheng Y, Narayanaswami V, Patel A, Johansson J, Azhar S: A new HDL mimetic peptide that stimulates cellular cholesterol efflux with high efficiency greatly reduces atherosclerosis in mice. J Lipid Res 2010, 51:1496-1503.
  • [45]Calpe-Berdiel L, Rotllan N, Palomer X, Ribas V, Blanco-Vaca F, Escola-Gil JC: Direct evidence in vivo of impaired macrophage-specific reverse cholesterol transport in ATP-binding cassette transporter A1-deficient mice. Biochim Biophys Acta 2005, 1738:6-9.
  • [46]Yamamoto S, Tanigawa H, Li X, Komaru Y, Billheimer JT, Rader DJ: Pharmacologic suppression of hepatic atp-binding cassette transporter 1 activity in mice reduces high-density lipoprotein cholesterol levels but promotes reverse cholesterol transport. Circulation 2011, 124:1382-1390.
  • [47]Tanigawa H, Billheimer JT, Tohyama J, Fuki IV, Ng DS, Rothblat GH, Rader DJ: Lecithin: Cholesterol acyltransferase expression has minimal effects on macrophage reverse cholesterol transport in vivo. Circulation 2009, 120:160-169.
  • [48]Brown RJ, Lagor WR, Sankaranaravanan S, Yasuda T, Quertermous T, Rothblat GH, Rader DJ: Impact of combined deficiency of hepatic lipase and endothelial lipase on the metabolism of both high-density lipoproteins and apolipoprotein B-containing lipoproteins. Circ Res 2010, 107:357-364.
  • [49]Jin W, Wang X, Millar JS, Quertermous T, Rothblat GH, Glick JM, Rader DJ: Hepatic proprotein convertases modulate HDL metabolism. Cell Metab 2007, 6:129-136.
  • [50]Tanigawa H, Billheimer JT, Tohyama J, Zhang Y, Rothblat G, Rader DJ: Expression of cholesteryl ester transfer protein in mice promotes macrophage reverse cholesterol transport. Circulation 2007, 116:1267-1273.
  • [51]El Bouhassani M, Gilibert S, Moreau M, Saint-Charles F, Treguier M, Poti F, Chapman MJ, Le Goff W, Lesnik P, Huby T: Cholesteryl ester transfer protein expression partially attenuates the adverse effects of SR-BI receptor deficiency on cholesterol metabolism and atherosclerosis. J Biol Chem 2011, 286:17227-17238.
  • [52]Niesor EJ, Magg C, Ogawa N, Okamoto H, von der Mark E, Matile H, Schmid G, Clerc RG, Chaput E, Blum-Kaelin D, et al.: Modulating cholesteryl ester transfer protein activity maintains efficient pre-beta-HDL formation and increases reverse cholesterol transport. J Lipid Res 2010, 51:3443-3454.
  • [53]Briand F, Thieblemont Q, Andre A, Ouguerram K, Sulpice T: CETP inhibitor torcetrapib promotes reverse cholesterol transport in obese insulin-resistant cetp-apob100 transgenic mice. Clin Transl Sci 2011, 4:414-420.
  • [54]Castro-Perez J, Briand F, Gagen K, Wang SP, Chen Y, McLaren DG, Shah V, Vreeken RJ, Hankemeier T, Sulpice T, et al.: Anacetrapib promotes reverse cholesterol transport and bulk cholesterol excretion in Syrian golden hamsters. J Lipid Res 2011, 52:1965-1973.
  • [55]Rotllan N, Ribas V, Calpe-Berdiel L, Martin-Campos JM, Blanco-Vaca F, Escola-Gil JC: Overexpression of human apolipoprotein A-II in transgenic mice does not impair macrophage-specific reverse cholesterol transport in vivo. Arterioscler Thromb Vasc Biol 2005, 25:e128-132.
  • [56]Lagor WR, Brown RJ, Toh SA, Millar JS, Fuki IV, de la Llera-Moya M, Yuen T, Rothblat G, Billheimer JT, Rader DJ: Overexpression of apolipoprotein F reduces HDL cholesterol levels in vivo. Arterioscler Thromb Vasc Biol 2009, 29:40-46.
  • [57]Zhang Y, Da Silva JR, Reilly M, Billheimer JT, Rothblat GH, Rader DJ: Hepatic expression of scavenger receptor class B type I (SR-BI) is a positive regulator of macrophage reverse cholesterol transport in vivo. J Clin Invest 2005, 115:2870-2874.
  • [58]Fabre AC, Malaval C, Ben Addi A, Verdier C, Pons V, Serhan N, Lichtenstein L, Combes G, Huby T, Briand F, et al.: P2Y13 receptor is critical for reverse cholesterol transport. Hepatology 2010, 52:1477-1483.
  • [59]de Boer JF, Annema W, Schreurs M, van der Veen JN, van der Giet M, Nijstad N, Kuipers F, Tietge UJ: Type I diabetes mellitus decreases in vivo macrophage-to-feces reverse cholesterol transport despite increased biliary sterol secretion in mice. J Lipid Res 2012, 53:348-357.
  • [60]Asleh R, Miller-Lotan R, Aviram M, Hayek T, Yulish M, Levy JE, Miller B, Blum S, Milman U, Shapira C, Levy AP: Haptoglobin genotype is a regulator of reverse cholesterol transport in diabetes in vitro and in vivo. Circ Res 2006, 99:1419-1425.
  • [61]Zhao B, Song J, Ghosh S: Hepatic overexpression of cholesteryl ester hydrolase enhances cholesterol elimination and in vivo reverse cholesterol transport. J Lipid Res 2008, 49:2212-2217.
  • [62]Camarota LM, Woollett LA, Howles PN: Reverse cholesterol transport is elevated in carboxyl ester lipase-knockout mice. FASEB J 2011, 25:1370-1377.
  • [63]Calpe-Berdiel L, Rotllan N, Fievet C, Roig R, Blanco-Vaca F, Escola-Gil JC: Liver X receptor-mediated activation of reverse cholesterol transport from macrophages to feces in vivo requires ABCG5/G8. J Lipid Res 2008, 49:1904-1911.
  • [64]Nijstad N, Gautier T, Briand F, Rader DJ, Tietge UJ: Biliary sterol secretion is required for functional in vivo reverse cholesterol transport in mice. Gastroenterology 2011, 140:1043-1051.
  • [65]Temel RE, Sawyer JK, Yu L, Lord C, Degirolamo C, McDaniel A, Marshall S, Wang N, Shah R, Rudel LL, Brown JM: Biliary sterol secretion is not required for macrophage reverse cholesterol transport. Cell Metab 2010, 12:96-102.
  • [66]Briand F, Naik SU, Fuki I, Millar JS, Macphee C, Walker M, Billheimer J, Rothblat G, Rader DJ: Both the peroxisome proliferator-activated receptor delta agonist, GW0742, and ezetimibe promote reverse cholesterol transport in mice by reducing intestinal reabsorption of HDL-derived cholesterol. Clin Transl Sci 2009, 2:127-133.
  • [67]Sehayek E, Hazen SL: Cholesterol absorption from the intestine is a major determinant of reverse cholesterol transport from peripheral tissue macrophages. Arterioscler Thromb Vasc Biol 2008, 28:1296-1297.
  • [68]Greenberg ME, Smith JD, Sehayek E: Moderately decreased cholesterol absorption rates are associated with a large atheroprotective effect. Arterioscler Thromb Vasc Biol 2009, 29:1745-1750.
  • [69]Annema W, Nijstad N, Tolle M, de Boer JF, Buijs RV, Heeringa P, van der Giet M, Tietge UJ: Myeloperoxidase and serum amyloid A contribute to impaired in vivo reverse cholesterol transport during the acute phase response but not group IIA secretory phospholipase A(2). J Lipid Res 2010, 51:743-754.
  • [70]McGillicuddy FC, de la Llera Moya M, Hinkle CC, Joshi MR, Chiquoine EH, Billheimer JT, Rothblat GH, Reilly MP: Inflammation impairs reverse cholesterol transport in vivo. Circulation 2009, 119:1135-1145.
  • [71]Malik P, Berisha SZ, Santore J, Agatisa-Boyle C, Brubaker G, Smith JD: Zymosan-mediated inflammation impairs in vivo reverse cholesterol transport. J Lipid Res 2011, 52:951-957.
  • [72]Lee-Rueckert M, Silvennoinen R, Rotllan N, Judstrom I, Blanco-Vaca F, Metso J, Jauhiainen M, Kovanen PT, Escola-Gil JC: Mast cell activation in vivo impairs the macrophage reverse cholesterol transport pathway in the mouse. Arterioscler Thromb Vasc Biol 2011, 31:520-527.
  • [73]Naik SU, Wang X, Da Silva JS, Jaye M, Macphee CH, Reilly MP, Billheimer JT, Rothblat GH, Rader DJ: Pharmacological activation of liver X receptors promotes reverse cholesterol transport in vivo. Circulation 2006, 113:90-97.
  • [74]Yasuda T, Grillot D, Billheimer JT, Briand F, Delerive P, Huet S, Rader DJ: Tissue-specific liver X receptor activation promotes macrophage reverse cholesterol transport in vivo. Arterioscler Thromb Vasc Biol 2010, 30:781-786.
  • [75]Zanotti I, Poti F, Pedrelli M, Favari E, Moleri E, Franceschini G, Calabresi L, Bernini F: The LXR agonist T0901317 promotes the reverse cholesterol transport from macrophages by increasing plasma efflux potential. J Lipid Res 2008, 49:954-960.
  • [76]Briand F, Treguier M, Andre A, Grillot D, Issandou M, Ouguerram K, Sulpice T: Liver X receptor activation promotes macrophage-to-feces reverse cholesterol transport in a dyslipidemic hamster model. J Lipid Res 2010, 51:763-770.
  • [77]Lo Sasso G, Murzilli S, Salvatore L, D'Errico I, Petruzzelli M, Conca P, Jiang ZY, Calabresi L, Parini P, Moschetta A: Intestinal specific LXR activation stimulates reverse cholesterol transport and protects from atherosclerosis. Cell Metab 2010, 12:187-193.
  • [78]Nakaya K, Tohyama J, Naik SU, Tanigawa H, MacPhee C, Billheimer JT, Rader DJ: Peroxisome proliferator-activated receptor-alpha activation promotes macrophage reverse cholesterol transport through a liver X receptor-dependent pathway. Arterioscler Thromb Vasc Biol 2011, 31:1276-1282.
  • [79]Rotllan N, Llaverias G, Julve J, Jauhiainen M, Calpe-Berdiel L, Hernandez C, Simo R, Blanco-Vaca F, Escola-Gil JC: Differential effects of gemfibrozil and fenofibrate on reverse cholesterol transport from macrophages to feces in vivo. Biochim Biophys Acta 2011, 1811:104-110.
  • [80]Toh SA, Millar JS, Billheimer J, Fuki I, Naik SU, Macphee C, Walker M, Rader DJ: PPARgamma activation redirects macrophage cholesterol from fecal excretion to adipose tissue uptake in mice via SR-BI. Biochem Pharmacol 2011, 81:934-941.
  • [81]Zhang Y, Yin L, Anderson J, Ma H, Gonzalez FJ, Willson TM, Edwards PA: Identification of novel pathways that control farnesoid X receptor-mediated hypocholesterolemia. J Biol Chem 2010, 285:3035-3043.
  • [82]Rayner KJ, Sheedy FJ, Esau CC, Hussain FN, Temel RE, Parathath S, van Gils JM, Rayner AJ, Chang AN, Suarez Y, et al.: Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis. J Clin Invest 2011, 121:2921-2931.
  • [83]Tancevski I, Demetz E, Eller P, Duwensee K, Hoefer J, Heim C, Stanzl U, Wehinger A, Auer K, Karer R, et al.: The liver-selective thyromimetic T-0681 influences reverse cholesterol transport and atherosclerosis development in mice. PLoS One 2010, 5:e8722.
  • [84]Terao Y, Ayaori M, Ogura M, Yakushiji E, Uto-Kondo H, Hisada T, Ozasa H, Takiguchi S, Nakaya K, Sasaki M, et al.: Effect of sulfonylurea agents on reverse cholesterol transport in vitro and vivo. J Atheroscler Thromb 2011, 18:513-530.
  • [85]Tohyama J, Billheimer JT, Fuki IV, Rothblat GH, Rader DJ, Millar JS: Effects of nevirapine and efavirenz on HDL cholesterol levels and reverse cholesterol transport in mice. Atherosclerosis 2009, 204:418-423.
  • [86]Nakaya K, Ayaori M, Uto-Kondo H, Hisada T, Ogura M, Yakushiji E, Takiguchi S, Terao Y, Ozasa H, Sasaki M, et al.: Cilostazol enhances macrophage reverse cholesterol transport in vitro and in vivo. Atherosclerosis 2010, 213:135-141.
  • [87]Ogura M, Ayaori M, Terao Y, Hisada T, Iizuka M, Takiguchi S, Uto-Kondo H, Yakushiji E, Nakaya K, Sasaki M, et al.: Proteasomal Inhibition Promotes ATP-Binding Cassette Transporter A1 (ABCA1) and ABCG1 expression and cholesterol efflux from macrophages in vitro and in vivo. Arterioscler Thromb Vasc Biol 2011, 31:1980-1987.
  • [88]Yu Y, Si Y, Song G, Luo T, Wang J, Qin S: Ethanolic extract of propolis promotes reverse cholesterol transport and the expression of ATP-binding cassette transporter A1 and G1 in mice. Lipids 2011, 46:805-811.
  • [89]Treguier M, Briand F, Boubacar A, Andre A, Magot T, Nguyen P, Krempf M, Sulpice T, Ouguerram K: Diet-induced dyslipidemia impairs reverse cholesterol transport in hamsters. Eur J Clin Invest 2011, 41:921-928.
  • [90]Escola-Gil JC, Llaverias G, Julve J, Jauhiainen M, Mendez-Gonzalez J, Blanco Vaca F: The Cholesterol Content of Western Diets Plays a Major Role in the Paradoxical Increase in High-Density Lipoprotein Cholesterol and Upregulates the Macrophage Reverse Cholesterol Transport Pathway. Arterioscler Thromb Vasc Biol 2011, 31:2493-2499.
  • [91]Uto-Kondo H, Ayaori M, Ogura M, Nakaya K, Ito M, Suzuki A, Takiguchi S, Yakushiji E, Terao Y, Ozasa H, et al.: Coffee consumption enhances high-density lipoprotein-mediated cholesterol efflux in macrophages. Circ Res 2010, 106:779-787.
  • [92]Nishimoto T, Pellizzon MA, Aihara M, Stylianou IM, Billheimer JT, Rothblat G, Rader DJ: Fish oil promotes macrophage reverse cholesterol transport in mice. Arterioscler Thromb Vasc Biol 2009, 29:1502-1508.
  • [93]Meissner M, Nijstad N, Kuipers F, Tietge UJ: Voluntary exercise increases cholesterol efflux but not macrophage reverse cholesterol transport in vivo in mice. Nutr Metab (Lond) 2010, 7:54.
  • [94]Rocco DD, Okuda LS, Pinto RS, Ferreira FD, Kubo SK, Nakandakare ER, Quintao EC, Catanozi S, Passarelli M: Aerobic exercise improves reverse cholesterol transport in cholesteryl ester transfer protein transgenic mice. Lipids 2011, 46:617-625.
  • [95]Ghosh S, St Clair RW, Rudel LL: Mobilization of cytoplasmic CE droplets by overexpression of human macrophage cholesteryl ester hydrolase. J Lipid Res 2003, 44:1833-1840.
  • [96]Ji Y, Jian B, Wang N, Sun Y, Moya ML, Phillips MC, Rothblat GH, Swaney JB, Tall AR: Scavenger receptor BI promotes high density lipoprotein-mediated cellular cholesterol efflux. J Biol Chem 1997, 272:20982-20985.
  • [97]Covey SD, Krieger M, Wang W, Penman M, Trigatti BL: Scavenger receptor class B type I-mediated protection against atherosclerosis in LDL receptor-negative mice involves its expression in bone marrow-derived cells. Arterioscler Thromb Vasc Biol 2003, 23:1589-1594.
  • [98]Zhang W, Yancey PG, Su YR, Babaev VR, Zhang Y, Fazio S, Linton MF: Inactivation of macrophage scavenger receptor class B type I promotes atherosclerotic lesion development in apolipoprotein E-deficient mice. Circulation 2003, 108:2258-2263.
  • [99]Van Eck M, Bos IS, Hildebrand RB, Van Rij BT, Van Berkel TJ: Dual role for scavenger receptor class B, type I on bone marrow-derived cells in atherosclerotic lesion development. Am J Pathol 2004, 165:785-794.
  • [100]Mazzone T, Reardon C: Expression of heterologous human apolipoprotein E by J774 macrophages enhances cholesterol efflux to HDL3. J Lipid Res 1994, 35:1345-1353.
  • [101]Lin CY, Duan H, Mazzone T: Apolipoprotein E-dependent cholesterol efflux from macrophages: kinetic study and divergent mechanisms for endogenous versus exogenous apolipoprotein E. J Lipid Res 1999, 40:1618-1627.
  • [102]Langer C, Huang Y, Cullen P, Wiesenhutter B, Mahley RW, Assmann G, von Eckardstein A: Endogenous apolipoprotein E modulates cholesterol efflux and cholesteryl ester hydrolysis mediated by high-density lipoprotein-3 and lipid-free apolipoproteins in mouse peritoneal macrophages. J Mol Med (Berl) 2000, 78:217-227.
  • [103]Nissen SE, Tsunoda T, Tuzcu EM, Schoenhagen P, Cooper CJ, Yasin M, Eaton GM, Lauer MA, Sheldon WS, Grines CL, et al.: Effect of recombinant ApoA-I Milano on coronary atherosclerosis in patients with acute coronary syndromes: a randomized controlled trial. JAMA 2003, 290:2292-2300.
  • [104]Tardif JC, Gregoire J, L'Allier PL, Ibrahim R, Lesperance J, Heinonen TM, Kouz S, Berry C, Basser R, Lavoie MA, et al.: Effects of reconstituted high-density lipoprotein infusions on coronary atherosclerosis: a randomized controlled trial. JAMA 2007, 297:1675-1682.
  • [105]Timmins JM, Lee JY, Boudyguina E, Kluckman KD, Brunham LR, Mulya A, Gebre AK, Coutinho JM, Colvin PL, Smith TL, et al.: Targeted inactivation of hepatic Abca1 causes profound hypoalphalipoproteinemia and kidney hypercatabolism of apoA-I. J Clin Invest 2005, 115:1333-1342.
  • [106]Brunham LR, Kruit JK, Iqbal J, Fievet C, Timmins JM, Pape TD, Coburn BA, Bissada N, Staels B, Groen AK, et al.: Intestinal ABCA1 directly contributes to HDL biogenesis in vivo. J Clin Invest 2006, 116:1052-1062.
  • [107]Drobnik W, Lindenthal B, Lieser B, Ritter M, Christiansen Weber T, Liebisch G, Giesa U, Igel M, Borsukova H, Buchler C, et al.: ATP-binding cassette transporter A1 (ABCA1) affects total body sterol metabolism. Gastroenterology 2001, 120:1203-1211.
  • [108]Annema W, Tietge UJ: Role of hepatic lipase and endothelial lipase in high-density lipoprotein-mediated reverse cholesterol transport. Curr Atheroscler Rep 2011, 13:257-265.
  • [109]Huuskonen J, Olkkonen VM, Jauhiainen M, Ehnholm C: The impact of phospholipid transfer protein (PLTP) on HDL metabolism. Atherosclerosis 2001, 155:269-281.
  • [110]Tailleux A, Duriez P, Fruchart JC, Clavey V: Apolipoprotein A-II, HDL metabolism and atherosclerosis. Atherosclerosis 2002, 164:1-13.
  • [111]Fabre AC, Vantourout P, Champagne E, Terce F, Rolland C, Perret B, Collet X, Barbaras R, Martinez LO: Cell surface adenylate kinase activity regulates the F(1)-ATPase/P2Y (13)-mediated HDL endocytosis pathway on human hepatocytes. Cell Mol Life Sci 2006, 63:2829-2837.
  • [112]Wiersma H, Gatti A, Nijstad N, Kuipers F, Tietge UJ: Hepatic SR-BI, not endothelial lipase, expression determines biliary cholesterol secretion in mice. J Lipid Res 2009, 50:1571-1580.
  • [113]Wiersma H, Gatti A, Nijstad N, Oude Elferink RP, Kuipers F, Tietge UJ: Scavenger receptor class B type I mediates biliary cholesterol secretion independent of ATP-binding cassette transporter g5/g8 in mice. Hepatology 2009, 50:1263-1272.
  • [114]Tietge UJ, Nijstad N, Havinga R, Baller JF, van der Sluijs FH, Bloks VW, Gautier T, Kuipers F: Secretory phospholipase A2 increases SR-BI-mediated selective uptake from HDL but not biliary cholesterol secretion. J Lipid Res 2008, 49:563-571.
  • [115]Dikkers A, Tietge UJ: Biliary cholesterol secretion: more than a simple ABC. World J Gastroenterol 2010, 16:5936-5945.
  • [116]Yamanashi Y, Takada T, Yoshikado T, Shoda J, Suzuki H: NPC2 regulates biliary cholesterol secretion via stimulation of ABCG5/G8-mediated cholesterol transport. Gastroenterology 2011, 140:1664-1674.
  • [117]Yu L, Hammer RE, Li-Hawkins J, Von Bergmann K, Lutjohann D, Cohen JC, Hobbs HH: Disruption of Abcg5 and Abcg8 in mice reveals their crucial role in biliary cholesterol secretion. Proc Natl Acad Sci USA 2002, 99:16237-16242.
  • [118]Kruit JK, Plosch T, Havinga R, Boverhof R, Groot PH, Groen AK, Kuipers F: Increased fecal neutral sterol loss upon liver X receptor activation is independent of biliary sterol secretion in mice. Gastroenterology 2005, 128:147-156.
  • [119]van der Velde AE, Vrins CL, van den Oever K, Kunne C, Oude Elferink RP, Kuipers F, Groen AK: Direct intestinal cholesterol secretion contributes significantly to total fecal neutral sterol excretion in mice. Gastroenterology 2007, 133:967-975.
  • [120]Brown JM, Bell TA, Sawyer JK, Smith TL, Kelley K, Shah R, Wilson MD, Davis MA, Lee RG, et al.: Targeted depletion of hepatic ACAT2-driven cholesterol esterification reveals a non-biliary route for fecal neutral sterol loss. J Biol Chem 2008, 283:10522-10534.
  • [121]van der Veen JN, van Dijk TH, Vrins CL, van Meer H, Havinga R, Bijsterveld K, Tietge UJ, Groen AK, Kuipers F: Activation of the liver X receptor stimulates trans-intestinal excretion of plasma cholesterol. J Biol Chem 2009, 284:19211-19219.
  • [122]Altmann SW, Davis HR Jr, Zhu LJ, Yao X, Hoos LM, Tetzloff G, Iyer SP, Maguire M, Golovko A, Zeng M, et al.: Niemann-Pick C1 Like 1 protein is critical for intestinal cholesterol absorption. Science 2004, 303:1201-1204.
  • [123]Garcia-Calvo M, Lisnock J, Bull HG, Hawes BE, Burnett DA, Braun MP, Crona JH, Davis HR Jr, Dean DC, Detmers PA, et al.: The target of ezetimibe is Niemann-Pick C1-Like 1 (NPC1L1). Proc Natl Acad Sci USA 2005, 102:8132-8137.
  • [124]Yu L, Li-Hawkins J, Hammer RE, Berge KE, Horton JD, Cohen JC, Hobbs HH: Overexpression of ABCG5 and ABCG8 promotes biliary cholesterol secretion and reduces fractional absorption of dietary cholesterol. J Clin Invest 2002, 110:671-680.
  • [125]Feingold KR, Spady DK, Pollock AS, Moser AH, Grunfeld C: Endotoxin, TNF, and IL-1 decrease cholesterol 7 alpha-hydroxylase mRNA levels and activity. J Lipid Res 1996, 37:223-228.
  • [126]Memon RA, Moser AH, Grunfeld C, Feingold KR: In vivo and in vitro regulation of sterol 27-hydroxylase in the liver during the acute phase response. potential role of hepatocyte nuclear factor-1. J Biol Chem 2001, 276:30118-30126.
  • [127]Lindstedt KA, Kovanen PT: Mast cells in vulnerable coronary plaques: potential mechanisms linking mast cell activation to plaque erosion and rupture. Curr Opin Lipidol 2004, 15:567-573.
  • [128]Repa JJ, Mangelsdorf DJ: The liver X receptor gene team: potential new players in atherosclerosis. Nat Med 2002, 8:1243-1248.
  • [129]Venkateswaran A, Laffitte BA, Joseph SB, Mak PA, Wilpitz DC, Edwards PA, Tontonoz P: Control of cellular cholesterol efflux by the nuclear oxysterol receptor LXR alpha. Proc Natl Acad Sci USA 2000, 97:12097-12102.
  • [130]Wang N, Ranalletta M, Matsuura F, Peng F, Tall AR: LXR-induced redistribution of ABCG1 to plasma membrane in macrophages enhances cholesterol mass efflux to HDL. Arterioscler Thromb Vasc Biol 2006, 26:1310-1316.
  • [131]Gross B, Staels B: PPAR agonists: multimodal drugs for the treatment of type-2 diabetes. Best Pract Res Clin Endocrinol Metab 2007, 21:687-710.
  • [132]Kersten S, Desvergne B, Wahli W: Roles of PPARs in health and disease. Nature 2000, 405:421-424.
  • [133]Chinetti G, Fruchart JC, Staels B: Peroxisome proliferator-activated receptors (PPARs): nuclear receptors at the crossroads between lipid metabolism and inflammation. Inflamm Res 2000, 49:497-505.
  • [134]Li AC, Glass CK: PPAR- and LXR-dependent pathways controlling lipid metabolism and the development of atherosclerosis. J Lipid Res 2004, 45:2161-2173.
  • [135]Bouhlel MA, Staels B, Chinetti-Gbaguidi G: Peroxisome proliferator-activated receptors-from active regulators of macrophage biology to pharmacological targets in the treatment of cardiovascular disease. J Intern Med 2008, 263:28-42.
  • [136]Barter PJ, Rye KA: Is there a role for fibrates in the management of dyslipidemia in the metabolic syndrome? Arterioscler Thromb Vasc Biol 2008, 28:39-46.
  • [137]Goldberg RB, Kendall DM, Deeg MA, Buse JB, Zagar AJ, Pinaire JA, Tan MH, Khan MA, Perez AT, Jacober SJ: A comparison of lipid and glycemic effects of pioglitazone and rosiglitazone in patients with type 2 diabetes and dyslipidemia. Diabetes Care 2005, 28:1547-1554.
  • [138]Polonsky T, Mazzone T, Davidson M: The clinical implications of the CHICAGO study for the management of cardiovascular risk in patients with type 2 diabetes mellitus. Trends Cardiovasc Med 2009, 19:94-99.
  • [139]Duez H, Lefebvre B, Poulain P, Torra IP, Percevault F, Luc G, Peters JM, Gonzalez FJ, Gineste R, Helleboid S, et al.: Regulation of human apoA-I by gemfibrozil and fenofibrate through selective peroxisome proliferator-activated receptor alpha modulation. Arterioscler Thromb Vasc Biol 2005, 25:585-591.
  • [140]Oliver WR Jr, Shenk JL, Snaith MR, Russell CS, Plunket KD, Bodkin NL, Lewis MC, Winegar DA, Sznaidman ML, Lambert MH, et al.: A selective peroxisome proliferator-activated receptor delta agonist promotes reverse cholesterol transport. Proc Natl Acad Sci USA 2001, 98:5306-5311.
  • [141]van der Veen JN, Kruit JK, Havinga R, Baller JF, Chimini G, Lestavel S, Staels B, Groot PH, Groen AK, Kuipers F: Reduced cholesterol absorption upon PPARdelta activation coincides with decreased intestinal expression of NPC1L1. J Lipid Res 2005, 46:526-534.
  • [142]Chen Z, Ishibashi S, Perrey S, Osuga J, Gotoda T, Kitamine T, Tamura Y, Okazaki H, Yahagi N, Iizuka Y, et al.: Troglitazone inhibits atherosclerosis in apolipoprotein E-knockout mice: pleiotropic effects on CD36 expression and HDL. Arterioscler Thromb Vasc Biol 2001, 21:372-377.
  • [143]Lee FY, Lee H, Hubbert ML, Edwards PA, Zhang Y: FXR, a multipurpose nuclear receptor. Trends Biochem Sci 2006, 31:572-580.
  • [144]Najafi-Shoushtari SH, Kristo F, Li Y, Shioda T, Cohen DE, Gerszten RE, Naar AM: MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science 2010, 328:1566-1569.
  • [145]Marquart TJ, Allen RM, Ory DS, Baldan A: miR-33 links SREBP-2 induction to repression of sterol transporters. Proc Natl Acad Sci USA 2010, 107:12228-12232.
  • [146]Kromhout D, Menotti A, Bloemberg B, Aravanis C, Blackburn H, Buzina R, Dontas AS, Fidanza F, Giampaoli S, Jansen A, et al.: Dietary saturated and trans fatty acids and cholesterol and 25-year mortality from coronary heart disease: the seven countries study. Prev Med 1995, 24:308-315.
  • [147]Meissner M, Lombardo E, Havinga R, Tietge UJ, Kuipers F, Groen AK: Voluntary wheel running increases bile acid as well as cholesterol excretion and decreases atherosclerosis in hypercholesterolemic mice. Atherosclerosis 2011, 218:323-329.
  文献评价指标  
  下载次数:12次 浏览次数:34次