期刊论文详细信息
Neural Development
Establishment of the neurogenic boundary of the mouse retina requires cooperation of SOX2 and WNT signaling
Larysa H Pevny2  Cynthia L Andoniadou3  Whitney E Heavner1 
[1] Department of Biology, Stanford University, Stanford, CA 94305, USA;UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA;Division of Craniofacial Development and Stem Cell Biology, King’s College London, Guy’s Hospital, Floor 27 Tower Wing, London SE1 9RT, UK
关键词: SOX2;    Retina;    Proliferation;    Neural progenitor cells;    Eye development;    Cell cycle;    Canonical WNT signaling;    β-Catenin;   
Others  :  1146002
DOI  :  10.1186/1749-8104-9-27
 received in 2014-08-27, accepted in 2014-11-14,  发布年份 2014
PDF
【 摘 要 】

Background

Eye development in vertebrates relies on the critical regulation of SOX2 expression. Humans with mutations in SOX2 often suffer from eye defects including anophthalmia (no eye) and microphthalmia (small eye). In mice, deletion of Sox2 in optic cup progenitor cells results in loss of neural competence and cell fate conversion of the neural retina to a non-neurogenic fate, specifically the acquisition of fate associated with progenitors of the ciliary epithelium. This fate is also promoted with constitutive expression of stabilized β-Catenin in the optic cup, where the WNT pathway is up-regulated. We addressed whether SOX2 co-ordinates the neurogenic boundary of the retina through modulating the WNT/β-Catenin pathway by using a genetic approach in the mouse.

Results

Upon deletion of Sox2 in the optic cup, response to WNT signaling was expanded, correlating with loss of neural competence, cell fate conversion of the neural retina to ciliary epithelium primordium and, in addition, increased cell cycle time of optic cup progenitors. Removal of Ctnnb1 rescued the cell fate conversion; however, the loss of neural competence and the proliferation defect resulting from lack of SOX2 were not overcome. Lastly, central Sox2-deficient optic cup progenitor cells exhibited WNT-independent up-regulation of D-type Cyclins.

Conclusion

We propose two distinct roles for SOX2 in the developing retina. Our findings suggest that SOX2 antagonizes the WNT pathway to maintain a neurogenic fate and, in contrast, regulates cycling of optic cup progenitors in a WNT-independent manner. Given that WNT signaling acting upstream of SOX2 has been implicated in the tumorigenicity of embryonic stem cell-derived retinal progenitor cells, our results distinguish the endogenous role of WNT signaling in early optic cup patterning and support a WNT-independent role for SOX2 in maintaining retinal progenitor cell proliferation.

【 授权许可】

   
2014 Heavner et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150403083630214.pdf 7274KB PDF download
Figure 7. 210KB Image download
Figure 6. 146KB Image download
Figure 5. 165KB Image download
Figure 4. 272KB Image download
Figure 3. 144KB Image download
Figure 2. 236KB Image download
Figure 1. 112KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Li H, Tierney C, Wen L, Wu JY, Rao Y: A single morphogenetic field gives rise to two retina primordia under the influence of the prechordal plate. Development 1997, 124:603-615.
  • [2]Zaghloul NA, Yan B, Moody SA: Step-wise specification of retinal stem cells during normal embryogenesis. Biol Cell Auspices Eur Cell Biol Organ 2005, 97:321-337.
  • [3]Heavner W, Pevny L: Eye development and retinogenesis. Cold Spring Harb Perspect Biol 2012, 4:a008391.
  • [4]Beebe DC: Development of the ciliary body: a brief review. Trans Ophthalmol Soc U K 1986, 105(Pt 2):123-130.
  • [5]Matsushima D, Heavner W, Pevny LH: Combinatorial regulation of optic cup progenitor cell fate by SOX2 and PAX6. Development 2011, 138:443-454.
  • [6]Liu H, Mohamed O, Dufort D, Wallace VA: Characterization of Wnt signaling components and activation of the Wnt canonical pathway in the murine retina. Dev Dyn 2003, 227:323-334.
  • [7]Cho S-H, Cepko CL: Wnt2b/beta-catenin-mediated canonical Wnt signaling determines the peripheral fates of the chick eye. Development 2006, 133:3167-3177.
  • [8]Liu H, Xu S, Wang Y, Mazerolle C, Thurig S, Coles BLK, Ren J-C, Taketo MM, van der Kooy D, Wallace VA: Ciliary margin transdifferentiation from neural retina is controlled by canonical Wnt signaling. Dev Biol 2007, 308:54-67.
  • [9]Trimarchi JM, Cho S-H, Cepko CL: Identification of genes expressed preferentially in the developing peripheral margin of the optic cup. Dev Dyn 2009, 238:2327-2329.
  • [10]Kitamoto J, Hyer J: The expression of Wnt2b in the optic cup lip requires a border between the pigmented and nonpigmented epithelium. Mol Vis 2010, 16:2701-2717.
  • [11]Stephens WZ, Senecal M, Nguyen M, Piotrowski T: Loss of adenomatous polyposis coli (apc) results in an expanded ciliary marginal zone in the zebrafish eye. Dev Dyn 2010, 239:2066-2077.
  • [12]Ha A, Perez-Iratxeta C, Liu H, Mears AJ, Wallace VA: Identification of Wnt/β-catenin modulated genes in the developing retina. Mol Vis 2012, 18:645-656.
  • [13]Fu X, Sun H, Klein WH, Mu X: Beta-catenin is essential for lamination but not neurogenesis in mouse retinal development. Dev Biol 2006, 299:424-437.
  • [14]Fotaki V, Smith R, Pratt T, Price DJ: Foxg1 is required to limit the formation of ciliary margin tissue and Wnt/β-catenin signalling in the developing nasal retina of the mouse. Dev Biol 2013, 380:299-313.
  • [15]Pevny L, Placzek M: SOX genes and neural progenitor identity. Curr Opin Neurobiol 2005, 15:7-13.
  • [16]Taranova OV, Magness ST, Fagan BM, Wu Y, Surzenko N, Hutton SR, Pevny LH: SOX2 is a dose-dependent regulator of retinal neural progenitor competence. Genes Dev 2006, 20:1187-1202.
  • [17]Van Raay TJ, Moore KB, Iordanova I, Steele M, Jamrich M, Harris WA, Vetter ML: Frizzled 5 signaling governs the neural potential of progenitors in the developing Xenopus retina. Neuron 2005, 46:23-36.
  • [18]Fantes J, Ragge NK, Lynch S-A, McGill NI, Collin JRO, Howard-Peebles PN, Hayward C, Vivian AJ, Williamson K, van Heyningen V, FitzPatrick DR: Mutations in SOX2 cause anophthalmia. Nat Genet 2003, 33:461-463.
  • [19]Fitzpatrick DR, van Heyningen V: Developmental eye disorders. Curr Opin Genet Dev 2005, 15:348-353.
  • [20]Ragge NK, Lorenz B, Schneider A, Bushby K, de Sanctis L, de Sanctis U, Salt A, Collin JRO, Vivian AJ, Free SL, Thompson P, Williamson KA, Sisodiya SM, van Heyningen V, Fitzpatrick DR: SOX2 anophthalmia syndrome. Am J Med Genet A 2005, 135:1-7. discussion 8
  • [21]Kelberman D, Rizzoti K, Avilion A, Bitner-Glindzicz M, Cianfarani S, Collins J, Chong WK, Kirk JMW, Achermann JC, Ross R, Carmignac D, Lovell-Badge R, Robinson ICAF, Dattani MT: Mutations within Sox2/SOX2 are associated with abnormalities in the hypothalamo-pituitary-gonadal axis in mice and humans. J Clin Invest 2006, 116:2442-2455.
  • [22]Alatzoglou KS, Andoniadou CL, Kelberman D, Buchanan CR, Crolla J, Arriazu MC, Roubicek M, Moncet D, Martinez-Barbera JP, Dattani MT: SOX2 haploinsufficiency is associated with slow progressing hypothalamo-pituitary tumours. Hum Mutat 2011, 32:1376-1380.
  • [23]Xie W, Lynch TJ, Liu X, Tyler SR, Yu S, Zhou X, Luo M, Kusner DM, Sun X, Yi Y, Zhang Y, Goodheart MJ, Parekh KR, Wells JM, Xue H-H, Pevny LH, Engelhardt JF: Sox2 modulates Lef-1 expression during airway submucosal gland development. Am J Physiol Lung Cell Mol Physiol 2014, 306:L645-L660.
  • [24]Mansukhani A, Ambrosetti D, Holmes G, Cornivelli L, Basilico C: Sox2 induction by FGF and FGFR2 activating mutations inhibits Wnt signaling and osteoblast differentiation. J Cell Biol 2005, 168:1065-1076.
  • [25]Agathocleous M, Iordanova I, Willardsen MI, Xue XY, Vetter ML, Harris WA, Moore KB: A directional Wnt/beta-catenin-Sox2-proneural pathway regulates the transition from proliferation to differentiation in the Xenopus retina. Development 2009, 136:3289-3299.
  • [26]Meyers JR, Hu L, Moses A, Kaboli K, Papandrea A, Raymond PA: β-catenin/Wnt signaling controls progenitor fate in the developing and regenerating zebrafish retina. Neural Develop 2012, 7:30. BioMed Central Full Text
  • [27]Edgar R, Domrachev M, Lash AE: Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 2002, 30:207-210.
  • [28]Huang DW, Sherman BT, Lempicki RA: Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 2009, 37:1-13.
  • [29]Huang DW, Sherman BT, Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009, 4:44-57.
  • [30]Civan MM, Macknight ADC: The ins and outs of aqueous humour secretion. Exp Eye Res 2004, 78:625-631.
  • [31]Rainger J, Keighren M, Keene DR, Charbonneau NL, Rainger JK, Fisher M, Mella S, Huang JT-J, Rose L, Van’t Hof R, Sakai LY, Jackson IJ, Fitzpatrick DR: A trans-acting protein effect causes severe eye malformation in the Mp mouse. PLoS Genet 2013, 9:e1003998.
  • [32]Coulombre AJ: The role of intraocular pressure in the development of the chick eye. II. Control of corneal size. AMA Arch Ophthalmol 1957, 57:250-253.
  • [33]Coulombre AJ, Coulombre JL: The role of intraocular pressure in the development of the chick eye: III. Ciliary body. Am J Ophthalmol 1957, 44(4 Pt 2):85-93.
  • [34]Flügel-Koch C, Ohlmann A, Piatigorsky J, Tamm ER: Disruption of anterior segment development by TGF-beta1 overexpression in the eyes of transgenic mice. Dev Dyn 2002, 225:111-125.
  • [35]Zhao S, Chen Q, Hung F-C, Overbeek PA: BMP signaling is required for development of the ciliary body. Development 2002, 129:4435-4442.
  • [36]Thut CJ, Rountree RB, Hwa M, Kingsley DM: A large-scale in situ screen provides molecular evidence for the induction of eye anterior segment structures by the developing lens. Dev Biol 2001, 231:63-76.
  • [37]Kubota R, McGuire C, Dierks B, Reh TA: Identification of ciliary epithelial-specific genes using subtractive libraries and cDNA arrays in the avian eye. Dev Dyn 2004, 229:529-540.
  • [38]Zorn AM, Barish GD, Williams BO, Lavender P, Klymkowsky MW, Varmus HE: Regulation of Wnt signaling by Sox proteins: XSox17 alpha/beta and XSox3 physically interact with beta-catenin. Mol Cell 1999, 4:487-498.
  • [39]Chen Y, Shi L, Zhang L, Li R, Liang J, Yu W, Sun L, Yang X, Wang Y, Zhang Y, Shang Y: The molecular mechanism governing the oncogenic potential of SOX2 in breast cancer. J Biol Chem 2008, 283:17969-17978.
  • [40]Kormish JD, Sinner D, Zorn AM: Interactions between SOX factors and Wnt/beta-catenin signaling in development and disease. Dev Dyn 2010, 239:56-68.
  • [41]Brault V, Moore R, Kutsch S, Ishibashi M, Rowitch DH, McMahon AP, Sommer L, Boussadia O, Kemler R: Inactivation of the beta-catenin gene by Wnt1-Cre-mediated deletion results in dramatic brain malformation and failure of craniofacial development. Development 2001, 128:1253-1264.
  • [42]Rowan S, Cepko CL: Genetic analysis of the homeodomain transcription factor Chx10 in the retina using a novel multifunctional BAC transgenic mouse reporter. Dev Biol 2004, 271:388-402.
  • [43]Soriano P: Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet 1999, 21:70-71.
  • [44]Monaghan AP, Davidson DR, Sime C, Graham E, Baldock R, Bhattacharya SS, Hill RE: The Msh-like homeobox genes define domains in the developing vertebrate eye. Development 1991, 112:1053-1061.
  • [45]da Silva MRD, Tiffin N, Mima T, Mikawa T, Hyer J: FGF-mediated induction of ciliary body tissue in the chick eye. Dev Biol 2007, 304:272-285.
  • [46]Mathers PH, Grinberg A, Mahon KA, Jamrich M: The Rx homeobox gene is essential for vertebrate eye development. Nature 1997, 387:603-607.
  • [47]Andoniadou CL, Matsushima D, Mousavy Gharavy SN, Signore M, Mackintosh AI, Schaeffer M, Gaston-Massuet C, Mollard P, Jacques TS, Le Tissier P, Dattani MT, Pevny LH, Martinez-Barbera JP: Sox2(+) stem/progenitor cells in the adult mouse pituitary support organ homeostasis and have tumor-inducing potential. Cell Stem Cell 2013, 13:433-445.
  • [48]Nishida A, Furukawa A, Koike C, Tano Y, Aizawa S, Matsuo I, Furukawa T: Otx2 homeobox gene controls retinal photoreceptor cell fate and pineal gland development. Nat Neurosci 2003, 6:1255-1263.
  • [49]Cui L, Guan Y, Qu Z, Zhang J, Liao B, Ma B, Qian J, Li D, Li W, Xu G-T, Jin Y: WNT signaling determines tumorigenicity and function of ESC-derived retinal progenitors. J Clin Invest 2013, 123:1647-1661.
  • [50]Martynoga B, Morrison H, Price DJ, Mason JO: Foxg1 is required for specification of ventral telencephalon and region-specific regulation of dorsal telencephalic precursor proliferation and apoptosis. Dev Biol 2005, 283:113-127.
  • [51]Tong W, Pollard JW: Genetic evidence for the interactions of cyclin D1 and p27(Kip1) in mice. Mol Cell Biol 2001, 21:1319-1328.
  • [52]Das G, Choi Y, Sicinski P, Levine EM: Cyclin D1 fine-tunes the neurogenic output of embryonic retinal progenitor cells. Neural Develop 2009, 4:15. BioMed Central Full Text
  • [53]Das G, Clark AM, Levine EM: Cyclin D1 inactivation extends proliferation and alters histogenesis in the postnatal mouse retina. Dev Dyn 2012, 241:941-952.
  • [54]Moshiri A, Reh TA: Persistent progenitors at the retinal margin of ptc+/- mice. J Neurosci 2004, 24:229-237.
  • [55]Wang Y, Dakubo GD, Thurig S, Mazerolle CJ, Wallace VA: Retinal ganglion cell-derived sonic hedgehog locally controls proliferation and the timing of RGC development in the embryonic mouse retina. Development 2005, 132:5103-5113.
  • [56]Sakagami K, Gan L, Yang X-J: Distinct effects of Hedgehog signaling on neuronal fate specification and cell cycle progression in the embryonic mouse retina. J Neurosci 2009, 29:6932-6944.
  • [57]Wall DS, Mears AJ, McNeill B, Mazerolle C, Thurig S, Wang Y, Kageyama R, Wallace VA: Progenitor cell proliferation in the retina is dependent on Notch-independent Sonic hedgehog/Hes1 activity. J Cell Biol 2009, 184:101-112.
  • [58]Wang YP, Dakubo G, Howley P, Campsall KD, Mazarolle CJ, Shiga SA, Lewis PM, McMahon AP, Wallace VA: Development of normal retinal organization depends on Sonic hedgehog signaling from ganglion cells. Nat Neurosci 2002, 5:831-832.
  • [59]Megason SG, McMahon AP: A mitogen gradient of dorsal midline Wnts organizes growth in the CNS. Development 2002, 129:2087-2098.
  • [60]Marquardt T, Ashery-Padan R, Andrejewski N, Scardigli R, Guillemot F, Gruss P: Pax6 is required for the multipotent state of retinal progenitor cells. Cell 2001, 105:43-55.
  • [61]Davis-Silberman N, Kalich T, Oron-Karni V, Marquardt T, Kroeber M, Tamm ER, Ashery-Padan R: Genetic dissection of Pax6 dosage requirements in the developing mouse eye. Hum Mol Genet 2005, 14:2265-2276.
  • [62]Farhy C, Elgart M, Shapira Z, Oron-Karni V, Yaron O, Menuchin Y, Rechavi G, Ashery-Padan R: Pax6 is required for normal cell-cycle exit and the differentiation kinetics of retinal progenitor cells. PLoS One 2013, 8:e76489.
  • [63]Hogan BL, Hirst EM, Horsburgh G, Hetherington CM: Small eye (Sey): a mouse model for the genetic analysis of craniofacial abnormalities. Development 1988, 103(Suppl):115-119.
  • [64]Hill RE, Favor J, Hogan BL, Ton CC, Saunders GF, Hanson IM, Prosser J, Jordan T, Hastie ND, van Heyningen V: Mouse small eye results from mutations in a paired-like homeobox-containing gene. Nature 1991, 354:522-525.
  • [65]Haremaki T, Tanaka Y, Hongo I, Yuge M, Okamoto H: Integration of multiple signal transducing pathways on Fgf response elements of the Xenopus caudal homologue Xcad3. Development 2003, 130:4907-4917.
  • [66]Kubo F, Takeichi M, Nakagawa S: Wnt2b controls retinal cell differentiation at the ciliary marginal zone. Development 2003, 130:587-598.
  • [67]Sikes JM, Newmark PA: Restoration of anterior regeneration in a planarian with limited regenerative ability. Nature 2013, 500:77-80.
  • [68]Simpson PJ, Moon C, Kleman AM, Connolly E, Ronnett GV: Progressive and inhibitory cell cycle proteins act simultaneously to regulate neurotrophin-mediated proliferation and maturation of neuronal precursors. Cell Cycle 2007, 6:1077-1089.
  • [69]Card DAG, Hebbar PB, Li L, Trotter KW, Komatsu Y, Mishina Y, Archer TK: Oct4/Sox2-regulated miR-302 targets cyclin D1 in human embryonic stem cells. Mol Cell Biol 2008, 28:6426-6438.
  • [70]Davis N, Mor E, Ashery-Padan R: Roles for Dicer1 in the patterning and differentiation of the optic cup neuroepithelium. Development 2011, 138:127-138.
  • [71]Liu Z, Walters BJ, Owen T, Brimble MA, Steigelman KA, Zhang L, Mellado Lagarde MM, Valentine MB, Yu Y, Cox BC, Zuo J: Regulation of p27Kip1 by Sox2 maintains quiescence of inner pillar cells in the murine auditory sensory epithelium. J Neurosci 2012, 32:10530-10540.
  • [72]Jayakody SA, Andoniadou CL, Gaston-Massuet C, Signore M, Cariboni A, Bouloux PM, Le Tissier P, Pevny LH, Dattani MT, Martinez-Barbera JP: SOX2 regulates the hypothalamic-pituitary axis at multiple levels. J Clin Invest 2012, 122:3635-3646.
  • [73]Hung FC, Zhao S, Chen Q, Overbeek PA: Retinal ablation and altered lens differentiation induced by ocular overexpression of BMP7. Vision Res 2002, 42:427-438.
  • [74]Zhang Y, Overbeek PA, Govindarajan V: Perinatal ablation of the mouse lens causes multiple anterior chamber defects. Mol Vis 2007, 13:2289-2300.
  • [75]Harada N, Tamai Y, Ishikawa T, Sauer B, Takaku K, Oshima M, Taketo MM: Intestinal polyposis in mice with a dominant stable mutation of the beta-catenin gene. EMBO J 1999, 18:5931-5942.
  • [76]Surzenko N, Crowl T, Bachleda A, Langer L, Pevny L: SOX2 maintains the quiescent progenitor cell state of postnatal retinal Muller glia. Development 2013, 140:1445-1456.
  文献评价指标  
  下载次数:7次 浏览次数:15次