期刊论文详细信息
Molecular Cytogenetics
19q13.11 microdeletion concomitant with ins(2;19)(p25.3;q13.1q13.4)dn in a boy: potential role of UBA2 in the associated phenotype
Fernando Fernández-Ramírez2  Susana Kofman3  Alicia Cervantes3  Jaime Berumen1  Laura Gómez-Laguna2  Alejandro Martínez-Herrera3  Karem Nieto-Martínez3  Carlos Venegas-Vega3 
[1] Unidad de Medicina Genómica, Hospital General de México, Dr. Balmis 148, México 06726, D.F, México;Unidad de Genética, Hospital General de México, Dr. Balmis 148, México 06726, D.F, México;Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad 3000, México 04510, D.F, México
关键词: UBA2;    Chromosomal rearrangement;    19q13.11 microdeletion syndrome;   
Others  :  1162967
DOI  :  10.1186/s13039-014-0061-z
 received in 2014-04-26, accepted in 2014-08-26,  发布年份 2014
PDF
【 摘 要 】

The 19q13.11 microdeletion syndrome (MIM613026) is a clinically recognisable condition in which a 324-kb minimal overlapping critical region has been recently described. However, genes not included within this region, such as WTIP and UBA2, have been proposed to contribute to the clinical characteristics observed in patients. Using cytogenetic techniques, single nucleotide polymorphism arrays, and the quantitative polymerase chain reaction, we identified a novel case with a 2.49-Mb deletion derived from a de novo chromosomal rearrangement. Based on a review of the literature, we support the notion that UBA2 haploinsufficiency could contribute to the phenotype of this rare genomic disorder. UBA2 belongs to a protein complex with sumoylation activity, and several transcription factors, hormone receptors, and signalling proteins related to brain and sexual development are regulated by this post-translational modification. Additional clinical reports and further research on UBA2 molecular function are warranted.

【 授权许可】

   
2014 Venegas-Vega et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150413084513769.pdf 2867KB PDF download
Figure 2. 60KB Image download
Figure 1. 69KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Kulharya AS, Michaelis RC, Norris KS, Taylor HA, Garcia-Heras J: Constitutional del(19)(q12q13.1) in a three-year-old girl with severe phenotypic abnormalities affecting multiple organ systems. Am J Med Genet 1998, 77:391-394.
  • [2]Malan V, Raoul O, Firth HV, Royer G, Turleau C, Bernheim A, Willatt L, Munnich A, Vekemans M, Lyonnet S, Cormier-Daire V, Colleaux L: 19q13.11 deletion syndrome: a novel clinically recognisable genetic condition identified by array comparative genomic hybridisation. J Med Genet 2009, 46:635-640.
  • [3]Schuurs-Hoeijmakers JH, Vermeer S, van Bon BW, Pfundt R, Marcelis C, de Brouwer AP, de Leeuw N, de Vries BB: Refining the critical region of the novel 19q13.11 microdeletion syndrome to 750 Kb. J Med Genet 2009, 46:421-423.
  • [4]Gana S, Veggiotti P, Sciacca G, Fedeli C, Bersano A, Micieli G, Maghnie M, Ciccone R, Rossi E, Plunkett K, Bi W, Sutton VR, Zuffardi O: 19q13.11 cryptic deletion: description of two new cases and indication for a role of WTIP haploinsufficiency in hypospadias. Eur J Hum Genet 2012, 20:852-856.
  • [5]Lin SY, Lee CN, Chen TC, Tu MP, Lin CY, Chang TY, Su YN: A fetus with 19q13.11 microdeletion presenting with intrauterine growth restriction and multiple cystic kidney. Case Rep Perinat Med 2012, 1:69-74.
  • [6]Forzano F, Napoli F, Uliana V, Malacarne M, Viaggi C, Bloise R, Coviello D, Di Maria E, Olivieri I, Di Iorgi N, Faravelli F: 19q13 microdeletion syndrome: Further refining the critical region. Eur J Med Genet 2012, 55:429-432.
  • [7]Chowdhury S, Bandholz AM, Parkash S, Dyack S, Rideout AL, Leppig KA, Thiese H, Wheeler PG, Tsang M, Ballif BC, Shaffer LG, Torchia BS, Ellison JW, Rosenfeld JA: Phenotypic and molecular characterization of 19q12q13.1 deletions: A report of five patients. Am J Med Genet A 2014, 164:62-69.
  • [8]Bragin E, Chatzimichali EA, Wright CF, Hurles ME, Firth HV, Bevan AP, Swaminathan GJ: DECIPHER: database for the interpretation of phenotype-linked plausibly pathogenic sequence and copy-number variation. Nucleic Acids Res 2014, 42:D993-D1000.
  • [9]Nowick K, Hamilton AT, Zhang H, Stubbs L: Rapid sequence and expression divergence suggest selection for novel function in primate-specific KRAB-ZNF genes. Mol Biol Evol 2010, 27:2606-2617.
  • [10]Jackson B, Thompson D, Wright M, McAndrews M: Update of the human secretoglobin (SCGB) gene superfamily and an example of ‘evolutionary bloom’ of androgen-binding protein genes within the mouse Scgb gene superfamily. Hum Genomics 2011, 5:691-702. BioMed Central Full Text
  • [11]Huang N, Lee I, Marcotte EM, Hurles ME: Characterising and predicting haploinsufficiency in the human genome. PLoS Genet 2010, 6:e1001154.
  • [12]Shaikh TH, Gai X, Perin JC, Glessner JT, Xie H, Murphy K, O'Hara R, Casalunovo T, Conlin LK, D'Arcy M, Frackelton EC, Geiger EA, Haldeman-Englert C, Imielinski M, Kim CE, Medne L, Annaiah K, Bradfield JP, Dabaghyan E, Eckert A, Onyiah CC, Ostapenko S, Otieno FG, Santa E, Shaner JL, Skraban R, Smith RM, Elia J, Goldmuntz E, Spinner NB, et al.: High-resolution mapping and analysis of copy number variations in the human genome: a data resource for clinical and research applications. Genome Res 2009, 19:1682-1690.
  • [13]MacDonald JR, Ziman R, Yuen RK, Feuk L, Scherer SW: The Database of Genomic Variants: a curated collection of structural variation in the human genome. Nucleic Acids Res 2014, 42:D986-D992.
  • [14]Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, Lin J, Minguez P, Bork P, von Mering C, Jensen LJ: STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res 2013, 41:D808-D815.
  • [15]Ulrich HD: The SUMO system: an overview. Methods Mol Biol 2009, 497:3-16.
  • [16]Mukherjee S, Cruz-Rodríguez O, Bolton E, Iñiguez-Lluhí JA: The in vivo role of androgen receptor SUMOylation as revealed by androgen insensitivity syndrome and prostate cancer mutations targeting the proline/glycine residues of synergy control motifs. J Biol Chem 2012, 287:31195-31206.
  • [17]Komatsu T, Mizusaki H, Mukai T, Ogawa H, Baba D, Shirakawa M, Hatakeyama S, Nakayama KI, Yamamoto H, Kikuchi A, Morohashi K: Small ubiquitin-like modifier 1 (SUMO-1) modification of the synergy control motif of Ad4 binding protein/steroidogenic factor 1 (Ad4BP/SF-1) regulates synergistic transcription between Ad4BP/SF-1 and Sox9. Mol Endocrinol 2004, 18:2451-2462.
  • [18]Gwizdek C, Cassé F, Martin S: Protein sumoylation in brain development, neuronal morphology and spinogenesis. Neuromolecular Med 2013, 15:677-691.
  文献评价指标  
  下载次数:5次 浏览次数:10次