期刊论文详细信息
Retrovirology
Identification of the feline foamy virus Bet domain essential for APOBEC3 counteraction
Martin Löchelt2  Carsten Münk1  Joachim Denner4  Michael Mühle4  Ann-Mareen Räthe2  Janet Lei2  Agnes Hotz-Wagenblatt3  Dragana Slavkovic Lukic2 
[1] Clinic for Gasteroenterology, Hepatology and Infectology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany;Research Program Infection and Cancer, Department Genome Modifications and Carcinogenesis, German Cancer Research Center (DKFZ), Heidelberg, Germany;Core Facility Genomics and Proteomics, German Cancer Research Center (DKFZ), Heidelberg, Germany;Robert Koch-Institute, Center for HIV and Retroviruses, Berlin, Germany
关键词: Virus defence protein;    Host-virus interaction;    Bet protein;    Antiviral restriction factors;    Foamy virus;    Retrovirus;    APOBEC3;   
Others  :  1209098
DOI  :  10.1186/1742-4690-10-76
 received in 2013-02-15, accepted in 2013-07-19,  发布年份 2013
PDF
【 摘 要 】

Background

APOBEC3 (A3) proteins restrict viral replication by cytidine deamination of viral DNA genomes and impairing reverse transcription and integration. To escape this restriction, lentiviruses have evolved the viral infectivity factor (Vif), which binds A3 proteins and targets them for proteolytic degradation. In contrast, foamy viruses (FVs) encode Bet proteins that allow replication in the presence of A3, apparently by A3 binding and/or sequestration, thus preventing A3 packaging into virions and subsequent restriction. Due to a long-lasting FV-host coevolution, Bet proteins mainly counteract restriction by A3s from their cognate or highly related host species.

Results

Through bioinformatics, we identified conserved motifs in Bet, all localized in the bel2 exon. In line with the localization of these conserved motifs within bel2, this part of feline FV (FFV) Bet has been shown to be essential for feline A3 (feA3) inactivation and feA3 protein binding. To study the function of the Bet motifs in detail, we analyzed the ability of targeted deletion, substitution, and chimeric FFV-PFV (prototype FV) Bet mutants to physically bind and/or inactivate feA3. Binding of Bet to feA3Z2b is sensitive to mutations in the first three conserved motifs and N- and C-terminal deletions and substitutions across almost the complete bel2 coding sequence. In contrast, the Bel1 (also designated Tas) domain of Bet is dispensable for basal feA3Z2b inactivation and binding but mainly increases the steady state level of Bet. Studies with PFV Bel1 and full-length FFV Bel2 chimeras confirmed the importance of Bel2 for A3 inactivation indicating that Bel1 is dispensable for basal feA3Z2b inactivation and binding but increases Bet stability. Moreover, the bel1/tas exon may be required for expression of a fully functional Bet protein from a spliced transcript.

Conclusions

We show that the Bel2 domain of FV Bet is essential for the inactivation of APOBEC3 cytidine deaminase restriction factors. The Bel1/Tas domain increases protein stability and can be exchanged by related sequence. Since feA3 binding and inactivation by Bet are highly correlated, the data support the view that FV Bet prevents A3-mediated restriction of viral replication by creating strong complexes with these proteins.

【 授权许可】

   
2013 Slavkovic Lukic et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150602082116113.pdf 2851KB PDF download
Figure 11. 144KB Image download
Figure 10. 159KB Image download
Figure 9. 137KB Image download
Figure 8. 45KB Image download
Figure 7. 77KB Image download
Figure 6. 95KB Image download
Figure 5. 97KB Image download
Figure 4. 45KB Image download
Figure 3. 57KB Image download
Figure 2. 75KB Image download
Figure 1. 65KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

【 参考文献 】
  • [1]Harris RS, Hultquist JF, Evans DT: The restriction factors of human immunodeficiency virus. J Biol Chem 2012, 287:40875-40883.
  • [2]Münk C, Hechler T, Chareza S, Löchelt M: Restriction of feline retroviruses: lessons from cat APOBEC3 cytidine deaminases and TRIM5alpha proteins. Vet Immunol Immunopathol 2010, 134:14-24.
  • [3]Peng G, Lei KJ, Jin W, Greenwell-Wild T, Wahl SM: Induction of APOBEC3 family proteins, a defensive maneuver underlying interferon-induced anti-HIV-1 activity. J Exp Med 2006, 203:41-46.
  • [4]Liberatore RA, Bieniasz PD: Tetherin is a key effector of the antiretroviral activity of type I interferon in vitro and in vivo. Proc Natl Acad Sci USA 2011, 108:18097-18101.
  • [5]Li N, Zhang W, Cao X: Identification of human homologue of mouse IFN-gamma induced protein from human dendritic cells. Immunol Lett 2000, 74:221-224.
  • [6]Stopak KS, Chiu YL, Kropp J, Grant RM, Greene WC: Distinct patterns of cytokine regulation of APOBEC3G expression and activity in primary lymphocytes, macrophages, and dendritic cells. J Biol Chem 2007, 282:3539-3546.
  • [7]Carthagena L, Bergamaschi A, Luna JM, David A, Uchil PD, Margottin-Goguet F, Mothes W, Hazan U, Transy C, Pancino G, Nisole S: Human TRIM gene expression in response to interferons. PLoS One 2009, 4:e4894.
  • [8]Sheehy AM, Gaddis NC, Choi JD, Malim MH: Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature 2002, 418:646-650.
  • [9]Neil SJ, Zang T, Bieniasz PD: Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu. Nature 2008, 451:425-430.
  • [10]Stremlau M, Owens CM, Perron MJ, Kiessling M, Autissier P, Sodroski J: The cytoplasmic body component TRIM5alpha restricts HIV-1 infection in old world monkeys. Nature 2004, 427:848-853.
  • [11]Laguette N, Sobhian B, Casartelli N, Ringeard M, Chable-Bessia C, Segeral E, Yatim A, Emiliani S, Schwartz O, Benkirane M: SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature 2011, 474:654-657.
  • [12]Hrecka K, Hao C, Gierszewska M, Swanson SK, Kesik-Brodacka M, Srivastava S, Florens L, Washburn MP, Skowronski J: Vpx relieves inhibition of HIV-1 infection of macrophages mediated by the SAMHD1 protein. Nature 2011, 474:658-661.
  • [13]Wilson SJ, Schoggins JW, Zang T, Kutluay SB, Jouvenet N, Alim MA, Bitzegeio J, Rice CM, Bieniasz PD: Inhibition of HIV-1 particle assembly by 2′,3′-cyclic-nucleotide 3′-phosphodiesterase. Cell Host Microbe 2012, 12:585-597.
  • [14]Schoggins JW, Wilson SJ, Panis M, Murphy MY, Jones CT, Bieniasz P, Rice CM: A diverse range of gene products are effectors of the type I interferon antiviral response. Nature 2011, 472:481-485.
  • [15]Löchelt M, Romen F, Bastone P, Muckenfuss H, Kirchner N, Kim YB, Truyen U, Rösler U, Battenberg M, Saib A, et al.: The antiretroviral activity of APOBEC3 is inhibited by the foamy virus accessory Bet protein. Proc Natl Acad Sci USA 2005, 102:7982-7987.
  • [16]Sawyer SL, Emerman M, Malik HS: Ancient adaptive evolution of the primate antiviral DNA-editing enzyme APOBEC3G. PLoS Biol 2004, 2:E275.
  • [17]Harris RS, Liddament MT: Retroviral restriction by APOBEC proteins. Nat Rev Immunol 2004, 4:868-877.
  • [18]Vartanian JP, Guetard D, Henry M, Wain-Hobson S: Evidence for editing of human papillomavirus DNA by APOBEC3 in benign and precancerous lesions. Science 2008, 320:230-233.
  • [19]Zhang H, Yang B, Pomerantz RJ, Zhang C, Arunachalam SC, Gao L: The cytidine deaminase CEM15 induces hypermutation in newly synthesized HIV-1 DNA. Nature 2003, 424:94-98.
  • [20]Suspene R, Guetard D, Henry M, Sommer P, Wain-Hobson S, Vartanian JP: Extensive editing of both hepatitis B virus DNA strands by APOBEC3 cytidine deaminases in vitro and in vivo. Proc Natl Acad Sci USA 2005, 102:8321-8326.
  • [21]Muckenfuss H, Hamdorf M, Held U, Perkovic M, Löwer J, Cichutek K, Flory E, Schumann GG, Münk C: APOBEC3 proteins inhibit human LINE-1 retrotransposition. J Biol Chem 2006, 281:22161-22172.
  • [22]Suspene R, Aynaud MM, Guetard D, Henry M, Eckhoff G, Marchio A, Pineau P, Dejean A, Vartanian JP, Wain-Hobson S: Somatic hypermutation of human mitochondrial and nuclear DNA by APOBEC3 cytidine deaminases, a pathway for DNA catabolism. Proc Natl Acad Sci USA 2011, 108:4858-4863.
  • [23]Vartanian JP, Sommer P, Wain-Hobson S: Death and the retrovirus. Trends Mol Med 2003, 9:409-413.
  • [24]Moebes A, Enssle J, Bieniasz PD, Heinkelein M, Lindemann D, Bock M, McClure MO, Rethwilm A: Human foamy virus reverse transcription that occurs late in the viral replication cycle. J Virol 1997, 71:7305-7311.
  • [25]Luo K, Wang T, Liu B, Tian C, Xiao Z, Kappes J, Yu XF: Cytidine deaminases APOBEC3G and APOBEC3F interact with human immunodeficiency virus type 1 integrase and inhibit proviral DNA formation. J Virol 2007, 81:7238-7248.
  • [26]Guo F, Cen S, Niu M, Saadatmand J, Kleiman L: Inhibition of formula-primed reverse transcription by human APOBEC3G during human immunodeficiency virus type 1 replication. J Virol 2006, 80:11710-11722.
  • [27]Derse D, Hill SA, Princler G, Lloyd P, Heidecker G: Resistance of human T cell leukemia virus type 1 to APOBEC3G restriction is mediated by elements in nucleocapsid. Proc Natl Acad Sci USA 2007, 104:2915-2920.
  • [28]Li XY, Guo F, Zhang L, Kleiman L, Cen S: APOBEC3G inhibits DNA strand transfer during HIV-1 reverse transcription. J Biol Chem 2007, 282:32065-32074.
  • [29]Bishop KN, Verma M, Kim EY, Wolinsky SM, Malim MH: APOBEC3G inhibits elongation of HIV-1 reverse transcripts. PLoS Pathog 2008, 4:e1000231.
  • [30]Newman EN, Holmes RK, Craig HM, Klein KC, Lingappa JR, Malim MH, Sheehy AM: Antiviral function of APOBEC3G can be dissociated from cytidine deaminase activity. Curr Biol 2005, 15:166-170.
  • [31]Münk C, Jensen BE, Zielonka J, Haussinger D, Kamp C: Running loose or getting lost: how HIV-1 counters and capitalizes on APOBEC3-induced mutagenesis through its Vif protein. Viruses 2012, 4:3132-3161.
  • [32]Holmes RK, Koning FA, Bishop KN, Malim MH: APOBEC3F can inhibit the accumulation of HIV-1 reverse transcription products in the absence of hypermutation. comparisons with APOBEC3G. J Biol Chem 2007, 282:2587-2595.
  • [33]Münk C, Beck T, Zielonka J, Hotz-Wagenblatt A, Chareza S, Battenberg M, Thielebein J, Cichutek K, Bravo IG, O'Brien SJ, et al.: Functions, structure, and read-through alternative splicing of feline APOBEC3 genes. Genome Biol 2008, 9:R48. BioMed Central Full Text
  • [34]Albin JS, Harris RS: Interactions of host APOBEC3 restriction factors with HIV-1 in vivo: implications for therapeutics. Expert Rev Mol Med 2010, 12:e4.
  • [35]LaRue RS, Andresdottir V, Blanchard Y, Conticello SG, Derse D, Emerman M, Greene WC, Jonsson SR, Landau NR, Löchelt M, et al.: Guidelines for naming nonprimate APOBEC3 genes and proteins. J Virol 2009, 83:494-497.
  • [36]Münk C, Willemsen A, Bravo IG: An ancient history of gene duplications, fusions and losses in the evolution of APOBEC3 mutators in mammals. BMC Evol Biol 2012, 12:71. BioMed Central Full Text
  • [37]Zielonka J, Münk C: Cellular restriction factors of feline immunodeficiency virus. Viruses 2011, 3:1986-2005.
  • [38]Zielonka J, Marino D, Hofmann H, Yuhki N, Lochelt M, Munk C: Vif of feline immunodeficiency virus from domestic cats protects against APOBEC3 restriction factors from many felids. J Virol 2010, 84:7312-7324.
  • [39]Kolokithas A, Rosenke K, Malik F, Hendrick D, Swanson L, Santiago ML, Portis JL, Hasenkrug KJ, Evans LH: The glycosylated Gag protein of a murine leukemia virus inhibits the antiretroviral function of APOBEC3. J Virol 2010, 84:10933-10936.
  • [40]Yu X, Yu Y, Liu B, Luo K, Kong W, Mao P, Yu XF: Induction of APOBEC3G ubiquitination and degradation by an HIV-1 Vif-Cul5-SCF complex. Science 2003, 302:1056-1060.
  • [41]Mehle A, Goncalves J, Santa-Marta M, McPike M, Gabuzda D: Phosphorylation of a novel SOCS-box regulates assembly of the HIV-1 Vif-Cul5 complex that promotes APOBEC3G degradation. Genes Dev 2004, 18:2861-2866.
  • [42]Bogerd HP, Doehle BP, Wiegand HL, Cullen BR: A single amino acid difference in the host APOBEC3G protein controls the primate species specificity of HIV type 1 virion infectivity factor. Proc Natl Acad Sci USA 2004, 101:3770-3774.
  • [43]Katzourakis A, Gifford RJ, Tristem M, Gilbert MT, Pybus OG: Macroevolution of complex retroviruses. Science 2009, 325:1512.
  • [44]Russell RA, Wiegand HL, Moore MD, Schafer A, McClure MO, Cullen BR: Foamy virus Bet proteins function as novel inhibitors of the APOBEC3 family of innate antiretroviral defense factors. J Virol 2005, 79:8724-8731.
  • [45]Perkovic M, Schmidt S, Marino D, Russell RA, Stauch B, Hofmann H, Kopietz F, Kloke BP, Zielonka J, Strover H, et al.: Species-specific inhibition of APOBEC3C by the prototype foamy virus protein bet. J Biol Chem 2009, 284:5819-5826.
  • [46]Cullen BR: Role and mechanism of action of the APOBEC3 family of antiretroviral resistance factors. J Virol 2006, 80:1067-1076.
  • [47]Chareza S, Slavkovic Lukic D, Liu Y, Räthe AM, Münk C, Zabogli E, Pistello M, Löchelt M: Molecular and functional interactions of cat APOBEC3 and feline foamy and immunodeficiency virus proteins: different ways to counteract host-encoded restriction. Virology 2012, 424:138-146.
  • [48]Alke A, Schwantes A, Zemba M, Flügel RM, Löchelt M: Characterization of the humoral immune response and virus replication in cats experimentally infected with feline foamy virus. Virology 2000, 275:170-176.
  • [49]Löchelt M: Foamy virus transactivation and gene expression. Curr Top Microbiol Immunol 2003, 277:27-61.
  • [50]Han GZ, Worobey M: An endogenous foamy-like viral element in the coelacanth genome. PLoS Pathog 2012, 8:e1002790.
  • [51]Alke A, Schwantes A, Kido K, Flötenmeyer M, Flügel RM, Löchelt M: The bet gene of feline foamy virus is required for virus replication. Virology 2001, 287:310-320.
  • [52]Rethwilm A: The replication strategy of foamy viruses. Curr Top Microbiol Immunol 2003, 277:1-26.
  • [53]Lindemann D, Rethwilm A: Foamy virus biology and its application for vector development. Viruses 2011, 3:561-585.
  • [54]Rethwilm A: Molecular biology of foamy viruses. Med Microbiol Immunol 2010, 199:197-207.
  • [55]Heneine W, Schweizer M, Sandstrom P, Folks T: Human infection with foamy viruses. Curr Top Microbiol Immunol 2003, 277:181-196.
  • [56]Switzer WM, Salemi M, Shanmugam V, Gao F, Cong ME, Kuiken C, Bhullar V, Beer BE, Vallet D, Gautier-Hion A, et al.: Ancient co-speciation of simian foamy viruses and primates. Nature 2005, 434:376-380.
  • [57]Materniak M, Hechler T, Löchelt M, Kuzmak J: Similar patterns of infection with bovine foamy virus in experimentally inoculated calves and sheep. J Virol 2013, 87:3516-3525.
  • [58]Bailey TL, Williams N, Misleh C, Li WW: MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res 2006, 34:W369-W373.
  • [59]Kobayashi M, Takaori-Kondo A, Miyauchi Y, Iwai K, Uchiyama T: Ubiquitination of APOBEC3G by an HIV-1 Vif-Cullin5-Elongin B-Elongin C complex is essential for Vif function. J Biol Chem 2005, 280:18573-18578.
  • [60]Mehle A, Strack B, Ancuta P, Zhang C, McPike M, Gabuzda D: Vif overcomes the innate antiviral activity of APOBEC3G by promoting its degradation in the ubiquitin-proteasome pathway. J Biol Chem 2004, 279:7792-7798.
  • [61]Conticello SG, Harris RS, Neuberger MS: The Vif protein of HIV triggers degradation of the human antiretroviral DNA deaminase APOBEC3G. Curr Biol 2003, 13:2009-2013.
  • [62]Marin M, Rose KM, Kozak SL, Kabat D: HIV-1 Vif protein binds the editing enzyme APOBEC3G and induces its degradation. Nat Med 2003, 9:1398-1403.
  • [63]Chivian D, Kim DE, Malmstrom L, Bradley P, Robertson T, Murphy P, Strauss CE, Bonneau R, Rohl CA, Baker D: Automated prediction of CASP-5 structures using the Robetta server. Proteins 2003, 53(Suppl 6):524-533.
  • [64]Kim DE, Chivian D, Baker D: Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res 2004, 32:W526-W531.
  • [65]Benkert P, Kunzli M, Schwede T: QMEAN server for protein model quality estimation. Nucleic Acids Res 2009, 37:W510-W514.
  • [66]Wallner B, Elofsson A: Can correct protein models be identified? Protein Sci 2003, 12:1073-1086.
  • [67]Romen F, Pawlita M, Sehr P, Bachmann S, Schröder J, Lutz H, Löchelt M: Antibodies against Gag are diagnostic markers for feline foamy virus infections while Env and Bet reactivity is undetectable in a substantial fraction of infected cats. Virology 2006, 345:502-508.
  • [68]Weikel J, Löchelt M, Truyen U: Demonstration of feline foamy virus in experimentally infected cats by immunohistochemistry. J Vet Med A Physiol Pathol Clin Med 2003, 50:415-417.
  • [69]Zemba M, Alke A, Bodem J, Winkler IG, Flower RL, Pfrepper K, Delius H, Flügel RM, Löchelt M: Construction of infectious feline foamy virus genomes: cat antisera do not cross-neutralize feline foamy virus chimera with serotype-specific Env sequences. Virology 2000, 266:150-156.
  • [70]Yon J, Fried M: Precise gene fusion by PCR. Nucleic Acids Res 1989, 17:4895.
  • [71]Rasband WS: ImageJ. U.S. Bethesda, Maryland, USA: National Institutes of Health; 2011. http://imagej.nih.gov/ij/ webcite, 1997
  文献评价指标  
  下载次数:65次 浏览次数:8次