期刊论文详细信息
Retrovirology
HIV inhibits endothelial reverse cholesterol transport through impacting subcellular Caveolin-1 trafficking
Ayalew Mergia1  Peter E Nadeau1  Shanshan Lin1 
[1] Department of Infectious Diseases and Pathology, University of Florida, Gainesville 32611, FL, USA
关键词: Endothelial cells;    Caveolin 1;    Nef;    HIV;   
Others  :  1221418
DOI  :  10.1186/s12977-015-0188-y
 received in 2015-03-04, accepted in 2015-07-06,  发布年份 2015
PDF
【 摘 要 】

Background

Human immunodeficiency virus (HIV) infection leads to decreased reverse cholesterol transport (RCT) in macrophages, and Nef mediated down-regulation and redistribution of ATP-binding cassette transporter A1 (ABCA1) are identified as key factors for this effect. This may partially explain the increased risk of atherosclerosis in HIV infected individuals. Since endothelial dysfunction is key in the initial stages of atherosclerosis, we sought to determine whether RCT was affected in human aortic endothelial cells (HAECs).

Results

We found that apoA-I does not significantly stimulate cholesterol efflux in HAECs while cholesterol efflux to high-density lipoprotein (HDL) was dramatically reduced in HAECs co-cultured with HIV infected cells. Studies with wild type and Nef defective HIV revealed no significant differences suggesting that multiple factors are working perhaps in concert with Nef to affect cholesterol efflux to HDL from HAECs. Interestingly, treating HAECs with recombinant Nef showed similar effect in HDL mediated cholesterol efflux as observed in HAECs co-cultured with HIV infected cells. Using a detergent-free based subcellular fractionation approach, we demonstrated that exposure of HAECs to HIV infected cells or Nef alone disrupts caveolin 1 (Cav-1) subcellular trafficking upon HDL stimulation. Moreover, Nef significantly enhanced tyrosine 14 phosphorylation of Cav-1 which may have an impact on recycling of Cav-1 and caveolae.

Conclusion

These results suggest that HIV interferes with cholesterol efflux by HDL in HAECs through the disruption of Cav-1s’ cellular distribution and that multiple factors are involved, possibly including Nef, for the inhibition of HDL mediated cholesterol efflux and alteration of cellular distribution of Cav-1.

【 授权许可】

   
2015 Lin et al.

【 预 览 】
附件列表
Files Size Format View
20150731081506757.pdf 2573KB PDF download
Figure7. 34KB Image download
Figure6. 57KB Image download
Figure5. 43KB Image download
Figure4. 26KB Image download
Figure3. 54KB Image download
Figure2. 26KB Image download
Figure1. 45KB Image download
【 图 表 】

Figure1.

Figure2.

Figure3.

Figure4.

Figure5.

Figure6.

Figure7.

【 参考文献 】
  • [1]Francisci D, Giannini S, Baldelli F, Leone M, Belfiori B, Guglielmini G et al.. HIV type 1 infection, and not short-term HAART, induces endothelial dysfunction. AIDS. 2009; 23:589-596.
  • [2]Piconi S, Parisotto S, Rizzardini G, Passerini S, Meraviglia P, Schiavini M et al.. Atherosclerosis is associated with multiple pathogenic mechanisms in HIV-infected antiretroviral-naive or treated individuals. AIDS. 2013; 27:381-389.
  • [3]Moore KJ, Tabas I. Macrophages in the pathogenesis of atherosclerosis. Cell. 2011; 145:341-355.
  • [4]Davignon J, Ganz P. Role of endothelial dysfunction in atherosclerosis. Circulation. 2004; 109:III27-III32.
  • [5]Bonetti PO, Lerman LO, Lerman A. Endothelial dysfunction: a marker of atherosclerotic risk. Arterioscler Thromb Vasc Biol. 2003; 23:168-175.
  • [6]Eugenin EA, Morgello S, Klotman ME, Mosoian A, Lento PA, Berman JW et al.. Human immunodeficiency virus (HIV) infects human arterial smooth muscle cells in vivo and in vitro: implications for the pathogenesis of HIV-mediated vascular disease. Am J Pathol. 2008; 172:1100-1111.
  • [7]Dhawan S, Weeks BS, Soderland C, Schnaper HW, Toro LA, Asthana SP et al.. HIV-1 infection alters monocyte interactions with human microvascular endothelial cells. J Immunol. 1995; 154:422-432.
  • [8]Lafrenie RM, Wahl LM, Epstein JS, Hewlett IK, Yamada KM, Dhawan S. HIV-1-Tat modulates the function of monocytes and alters their interactions with microvessel endothelial cells. A mechanism of HIV pathogenesis. J Immunol. 1996; 156:1638-1645.
  • [9]Nottet HS. Interactions between macrophages and brain microvascular endothelial cells: role in pathogenesis of HIV-1 infection and blood–brain barrier function. J Neurovirol. 1999; 5:659-669.
  • [10]Caccuri F, Giagulli C, Bugatti A, Benetti A, Alessandri G, Ribatti D et al.. HIV-1 matrix protein p17 promotes angiogenesis via chemokine receptors CXCR1 and CXCR2. Proc Natl Acad Sci USA. 2012; 109:14580-14585.
  • [11]Duffy P, Wang X, Lin PH, Yao Q, Chen C. HIV Nef protein causes endothelial dysfunction in porcine pulmonary arteries and human pulmonary artery endothelial cells. J Surg Res. 2009; 156:257-264.
  • [12]Jiang J, Fu W, Wang X, Lin PH, Yao Q, Chen C. HIV gp120 induces endothelial dysfunction in tumour necrosis factor-alpha-activated porcine and human endothelial cells. Cardiovasc Res. 2010; 87:366-374.
  • [13]Marecki JC, Cool CD, Parr JE, Beckey VE, Luciw PA, Tarantal AF et al.. HIV-1 Nef is associated with complex pulmonary vascular lesions in SHIV-nef-infected macaques. Am J Respir Crit Care Med. 2006; 174:437-445.
  • [14]Ullrich CK, Groopman JE, Ganju RK. HIV-1 gp120- and gp160-induced apoptosis in cultured endothelial cells is mediated by caspases. Blood. 2000; 96:1438-1442.
  • [15]Mujawar Z, Rose H, Morrow MP, Pushkarsky T, Dubrovsky L, Mukhamedova N et al.. Human immunodeficiency virus impairs reverse cholesterol transport from macrophages. PLoS Biol. 2006; 4:e365.
  • [16]Cui HL, Ditiatkovski M, Kesani R, Bobryshev YV, Liu Y, Geyer M et al.. HIV protein Nef causes dyslipidemia and formation of foam cells in mouse models of atherosclerosis. FASEB J. 2014; 28:2828-2839.
  • [17]Calabresi L, Gomaraschi M, Simonelli S, Bernini F. Franceschini G (2015) HDL and atherosclerosis: Insights from inherited HDL disorders. Biochim Biophys Acta. 1851; 1:13-18.
  • [18]Singh RB, Mengi SA, Xu YJ, Arneja AS, Dhalla NS. Pathogenesis of atherosclerosis: a multifactorial process. Exp Clin Cardiol. 2002; 7:40-53.
  • [19]Rothberg KG, Heuser JE, Donzell WC, Ying YS, Glenney JR, Anderson RG. Caveolin, a protein component of caveolae membrane coats. Cell. 1992; 68:673-682.
  • [20]Glenney JR. Tyrosine phosphorylation of a 22-kDa protein is correlated with transformation by Rous sarcoma virus. J Biol Chem. 1989; 264:20163-20166.
  • [21]Parton RG, Simons K. The multiple faces of caveolae. Nat Rev Mol Cell Biol. 2007; 8:185-194.
  • [22]Harris J, Werling D, Hope JC, Taylor G, Howard CJ. Caveolae and caveolin in immune cells: distribution and functions. Trends Immunol. 2002; 23:158-164.
  • [23]Frank PG, Lisanti MP. Caveolin-1 and caveolae in atherosclerosis: differential roles in fatty streak formation and neointimal hyperplasia. Curr Opin Lipidol. 2004; 15:523-529.
  • [24]Chao WT, Fan SS, Chen JK, Yang VC. Visualizing caveolin-1 and HDL in cholesterol-loaded aortic endothelial cells. J Lipid Res. 2003; 44:1094-1099.
  • [25]Huang JH, Lu L, Lu H, Chen X, Jiang S, Chen YH. Identification of the HIV-1 gp41 core-binding motif in the scaffolding domain of caveolin-1. J Biol Chem. 2007; 282:6143-6152.
  • [26]Wang XM, Nadeau PE, Lo YT, Mergia A. Caveolin-1 modulates HIV-1 envelope-induced bystander apoptosis through gp41. J Virol. 2010; 84:6515-6526.
  • [27]Lin S, Wang XM, Nadeau PE, Mergia A. HIV infection upregulates caveolin 1 expression to restrict virus production. J Virol. 2010; 84:9487-9496.
  • [28]Lin S, Nadeau PE, Wang X, Mergia A. Caveolin-1 reduces HIV-1 infectivity by restoration of HIV Nef mediated impairment of cholesterol efflux by apoA-I. Retrovirology. 2012; 9:85. BioMed Central Full Text
  • [29]Frank PG, Woodman SE, Park DS, Lisanti MP. Caveolin, caveolae, and endothelial cell function. Arterioscler Thromb Vasc Biol. 2003; 23:1161-1168.
  • [30]Gratton JP, Bernatchez P, Sessa WC. Caveolae and caveolins in the cardiovascular system. Circ Res. 2004; 94:1408-1417.
  • [31]Andrade AC, Cotter BR. Endothelial function and cardiovascular diseases in HIV infected patient. Braz J Infect Dis. 2006; 10:139-145.
  • [32]O’Connell BJ, Denis M, Genest J. Cellular physiology of cholesterol efflux in vascular endothelial cells. Circulation. 2004; 110:2881-2888.
  • [33]Hassan HH, Denis M, Krimbou L, Marcil M, Genest J. Cellular cholesterol homeostasis in vascular endothelial cells. Can J Cardiol. 2006; 22 Suppl B:35B-40B.
  • [34]Liao H, Langmann T, Schmitz G, Zhu Y. Native LDL upregulation of ATP-binding cassette transporter-1 in human vascular endothelial cells. Arterioscler Thromb Vasc Biol. 2002; 22:127-132.
  • [35]Shaul PW. Endothelial nitric oxide synthase, caveolae and the development of atherosclerosis. J Physiol. 2003; 547:21-33.
  • [36]Feron O, Balligand JL. Caveolins and the regulation of endothelial nitric oxide synthase in the heart. Cardiovasc Res. 2006; 69:788-797.
  • [37]Bauer PM, Yu J, Chen Y, Hickey R, Bernatchez PN, Looft-Wilson R et al.. Endothelial-specific expression of caveolin-1 impairs microvascular permeability and angiogenesis. Proc Natl Acad Sci USA. 2005; 102:204-209.
  • [38]Minshall RD, Tiruppathi C, Vogel SM, Niles WD, Gilchrist A, Hamm HE et al.. Endothelial cell-surface gp60 activates vesicle formation and trafficking via G(i)-coupled Src kinase signaling pathway. J Cell Biol. 2000; 150:1057-1070.
  • [39]Shajahan AN, Timblin BK, Sandoval R, Tiruppathi C, Malik AB, Minshall RD. Role of Src-induced dynamin-2 phosphorylation in caveolae-mediated endocytosis in endothelial cells. J Biol Chem. 2004; 279:20392-20400.
  • [40]Shajahan AN, Tiruppathi C, Smrcka AV, Malik AB, Minshall RD. Gbetagamma activation of Src induces caveolae-mediated endocytosis in endothelial cells. J Biol Chem. 2004; 279:48055-48062.
  • [41]Sun Y, Hu G, Zhang X, Minshall RD. Phosphorylation of caveolin-1 regulates oxidant-induced pulmonary vascular permeability via paracellular and transcellular pathways. Circ Res. 2009; 105:676-685.
  • [42]Tiruppathi C, Song W, Bergenfeldt M, Sass P, Malik AB. Gp60 activation mediates albumin transcytosis in endothelial cells by tyrosine kinase-dependent pathway. J Biol Chem. 1997; 272:25968-25975.
  • [43]Hu G, Vogel SM, Schwartz DE, Malik AB, Minshall RD. Intercellular adhesion molecule-1-dependent neutrophil adhesion to endothelial cells induces caveolae-mediated pulmonary vascular hyperpermeability. Circ Res. 2008; 102:e120-131.
  • [44]Le Lay S, Hajduch E, Lindsay MR, Le Liepvre X, Thiele C, Ferre P et al.. Cholesterol-induced caveolin targeting to lipid droplets in adipocytes: a role for caveolar endocytosis. Traffic. 2006; 7:549-561.
  • [45]Sharma DK, Brown JC, Choudhury A, Peterson TE, Holicky E, Marks DL et al.. Selective stimulation of caveolar endocytosis by glycosphingolipids and cholesterol. Mol Biol Cell. 2004; 15:3114-3122.
  • [46]Sowa G. Caveolae, caveolins, cavins, and endothelial cell function: new insights. Front Physiol. 2012; 2:120.
  • [47]Libby P. Inflammation in atherosclerosis. Nature. 2002; 420:868-874.
  • [48]Libby P, Ridker PM, Maseri A. Inflammation and atherosclerosis. Circulation. 2002; 105:1135-1143.
  • [49]Fujii Y, Otake K, Fujita Y, Yamamoto N, Nagai Y, Tashiro M et al.. Clustered localization of oligomeric Nef protein of human immunodeficiency virus type 1 on the cell surface. FEBS Lett. 1996; 395:257-261.
  • [50]Huang MB, Jin LL, James CO, Khan M, Powell MD, Bond VC. Characterization of Nef–CXCR4 interactions important for apoptosis induction. J Virol. 2004; 78:11084-11096.
  • [51]James CO, Huang MB, Khan M, Garcia-Barrio M, Powell MD, Bond VC. Extracellular Nef protein targets CD4+ T cells for apoptosis by interacting with CXCR4 surface receptors. J Virol. 2004; 78:3099-3109.
  • [52]Fujii Y, Otake K, Tashiro M, Adachi A. Soluble Nef antigen of HIV-1 is cytotoxic for human CD4+ T cells. FEBS Lett. 1996; 393:93-96.
  • [53]Vilhardt F, Plastre O, Sawada M, Suzuki K, Wiznerowicz M, Kiyokawa E et al.. The HIV-1 Nef protein and phagocyte NADPH oxidase activation. J Biol Chem. 2002; 277:42136-42143.
  • [54]Salmen S, Colmenares M, Peterson DL, Reyes E, Rosales JD, Berrueta L. HIV-1 Nef associates with p22-phox, a component of the NADPH oxidase protein complex. Cell Immunol. 2010; 263:166-171.
  • [55]Olivetta E, Pietraforte D, Schiavoni I, Minetti M, Federico M, Sanchez M. HIV-1 Nef regulates the release of superoxide anions from human macrophages. Biochem J. 2005; 390:591-602.
  • [56]Lenassi M, Cagney G, Liao M, Vaupotic T, Bartholomeeusen K, Cheng Y et al.. HIV Nef is secreted in exosomes and triggers apoptosis in bystander CD4+ T cells. Traffic. 2010; 11:110-122.
  • [57]Raymond AD, Campbell-Sims TC, Khan M, Lang M, Huang MB, Bond VC et al.. HIV Type 1 Nef is released from infected cells in CD45(+) microvesicles and is present in the plasma of HIV-infected individuals. AIDS Res Hum Retrovir. 2011; 27:167-178.
  • [58]Muratori C, Cavallin LE, Kratzel K, Tinari A, De Milito A, Fais S et al.. Massive secretion by T cells is caused by HIV Nef in infected cells and by Nef transfer to bystander cells. Cell Host Microbe. 2009; 6:218-230.
  • [59]del Pozo MA, Balasubramanian N, Alderson NB, Kiosses WB, Grande-Garcia A, Anderson RG et al.. Phospho-caveolin-1 mediates integrin-regulated membrane domain internalization. Nat Cell Biol. 2005; 7:901-908.
  • [60]Orlichenko L, Huang B, Krueger E, McNiven MA. Epithelial growth factor-induced phosphorylation of caveolin 1 at tyrosine 14 stimulates caveolae formation in epithelial cells. J Biol Chem. 2006; 281:4570-4579.
  • [61]Yue L, Mazzone T. Endogenous adipocyte apolipoprotein E is colocalized with caveolin at the adipocyte plasma membrane. J Lipid Res. 2011; 52:489-498.
  • [62]Hayashi H, Mizuno T, Michikawa M, Haass C, Yanagisawa K. Amyloid precursor protein in unique cholesterol-rich microdomains different from caveolae-like domains. Biochim Biophys Acta. 2000; 1483:81-90.
  文献评价指标  
  下载次数:0次 浏览次数:2次