| Retrovirology | |
| Proteomic analysis of HIV-1 Nef cellular binding partners reveals a role for exocyst complex proteins in mediating enhancement of intercellular nanotube formation | |
| Dana Gabuzda1  Kristin A Agopian3  Vikas Misra2  Kevin C Olivieri2  Joya Mukerji3  | |
| [1] Department of Neurology (Microbiology), Harvard Medical School, Boston, MA, USA;Department of Cancer Immunology and AIDS, Dana Farber Cancer Institute, Boston, MA, USA;Division of Medical Sciences Program in Virology, Harvard Medical School, Boston, MA, USA | |
| 关键词: Fluorescence confocal microscopy; Pak2 kinase; Intercellular nanotubes; Exocyst complex; Nef; HIV; | |
| Others : 1209312 DOI : 10.1186/1742-4690-9-33 |
|
| received in 2010-07-01, accepted in 2012-04-25, 发布年份 2012 | |
PDF
|
|
【 摘 要 】
Background
HIV-1 Nef protein contributes to pathogenesis via multiple functions that include enhancement of viral replication and infectivity, alteration of intracellular trafficking, and modulation of cellular signaling pathways. Nef stimulates formation of tunneling nanotubes and virological synapses, and is transferred to bystander cells via these intercellular contacts and secreted microvesicles. Nef associates with and activates Pak2, a kinase that regulates T-cell signaling and actin cytoskeleton dynamics, but how Nef promotes nanotube formation is unknown.
Results
To identify Nef binding partners involved in Pak2-association dependent Nef functions, we employed tandem mass spectrometry analysis of Nef immunocomplexes from Jurkat cells expressing wild-type Nef or Nef mutants defective for the ability to associate with Pak2 (F85L, F89H, H191F and A72P, A75P in NL4-3). We report that wild-type, but not mutant Nef, was associated with 5 components of the exocyst complex (EXOC1, EXOC2, EXOC3, EXOC4, and EXOC6), an octameric complex that tethers vesicles at the plasma membrane, regulates polarized exocytosis, and recruits membranes and proteins required for nanotube formation. Additionally, Pak2 kinase was associated exclusively with wild-type Nef. Association of EXOC1, EXOC2, EXOC3, and EXOC4 with wild-type, but not mutant Nef, was verified by co-immunoprecipitation assays in Jurkat cells. Furthermore, shRNA-mediated depletion of EXOC2 in Jurkat cells abrogated Nef-mediated enhancement of nanotube formation. Using bioinformatic tools, we visualized protein interaction networks that reveal functional linkages between Nef, the exocyst complex, and the cellular endocytic and exocytic trafficking machinery.
Conclusions
Exocyst complex proteins are likely a key effector of Nef-mediated enhancement of nanotube formation, and possibly microvesicle secretion. Linkages revealed between Nef and the exocyst complex suggest a new paradigm of exocyst involvement in polarized targeting for intercellular transfer of viral proteins and viruses.
【 授权许可】
2012 Mukerji et al.; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20150602094838353.pdf | 2016KB | ||
| Figure 6. | 62KB | Image | |
| Figure 5. | 112KB | Image | |
| Figure 4. | 73KB | Image | |
| Figure 3. | 30KB | Image | |
| Figure 2. | 21KB | Image | |
| Figure 1. | 53KB | Image |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
【 参考文献 】
- [1]Arhel NJ, Kirchhoff F: Implications of nef: host cell interactions in viral persistence and progression to AIDS. Curr Top Microbiol Immunol 2010, 339:147-175.
- [2]Foster J, Garcia JV: HIV-1 Nef: at the crossroads. Retrovirology 2008, 5:84. BioMed Central Full Text
- [3]Peterlin BM, Trono D: Hide, shield and strike back: how HIV-infected cells avoid immune eradication. Nat Rev Immunol 2003, 3:97-107.
- [4]Roeth JF, Collins KL: Human immunodeficiency virus type 1 Nef: adapting to intracellular trafficking pathways. Microbiol Mol Biol Rev 2006, 70:548-563.
- [5]Wei BL, Arora VK, Foster JL, Sodora DL, Garcia JV: In vivo analysis of Nef function. Curr HIV Res 2003, 1:41-50.
- [6]Fenard D, Yonemoto W, de Noronha C, Cavrois M, Williams SA, Greene WC: Nef is physically recruited into the immunological synapse and potentiates T cell activation early after TCR engagemen. J Immunol (Baltimore, Md: 1950) 2005, 175:6050-6057.
- [7]Schrager JA, Marsh JW: HIV-1 Nef increases T cell activation in a stimulus-dependent manner. Proceedings of the National Academy of Sciences of the United States 1999, 96:8167-8172.
- [8]Simmons A, Aluvihare V, McMichael A: Nef triggers a transcriptional program in T cells imitating single-signal T cell activation and inducing HIV virulence mediators. Immunity 2001, 14:763-777.
- [9]Costa LJ, Chen N, Lopes A, Aguiar RS, Tanuri A, Plemenitas A, Peterlin BM: Interactions between Nef and AIP1 proliferate multivesicular bodies and facilitate egress of HIV-1. Retrovirology 2006, 3:33. BioMed Central Full Text
- [10]Peterlin BM: Nef: out and in? Nat Immunol 2006, 7:229-230.
- [11]Stumptner-Cuvelette P, Jouve M, Helft J, Dugast M, Glouzman AS, Jooss K, Raposo G, Benaroch P: Human immunodeficiency virus-1 Nef expression induces intracellular accumulation of multivesicular bodies and major histocompatibility complex class II complexes: potential role of phosphatidylinositol 3-kinase. Mol Biol Cell 2003, 14:4857-4870.
- [12]Rudnicka D, Schwartz O: Intrusive HIV-1-infected cells. Nat Immunol 2009, 10:933-934.
- [13]Xu W, Santini PA, Sullivan JS, He B, Shan M, Ball SC, Dyer WB, Ketas TJ, Chadburn A, Cohen-gould L, et al.: HIV-1 evades virus-specific IgG2 and IgA responses by targeting systemic and intestinal B cells via long-range intercellular conduits. Nat Publishing Group 2009, 10:1008-1017.
- [14]da Silva LL, Sougrat R, Burgos PV, Janvier K, Mattera R, Bonifacino JS: Human immunodeficiency virus type 1 Nef protein targets CD4 to the multivesicular body pathway. J Virol 2009, 83:6578-6590.
- [15]Jin YJ, Cai CY, Zhang X, Zhang HT, Hirst JA, Burakoff SJ: HIV Nef-mediated CD4 down-regulation is adaptor protein complex 2 dependent. J Immunol 2005, 175:3157-3164.
- [16]Lindwasser OW, Smith WJ, Chaudhuri R, Yang P, Hurley JH, Bonifacino JS: A diacidic motif in human immunodeficiency virus type 1 Nef is a novel determinant of binding to AP-2. J Virol 2008, 82:1166-1174.
- [17]Jager S, Cimermancic P, Gulbahce N, Johnson JR, McGovern KE, Clarke SC, Shales M, Mercenne G, Pache L, Li K, et al.: Global landscape of HIV-human protein complexes. Nature 2012, 481:365-370.
- [18]Craig HM, Reddy TR, Riggs NL, Dao PP, Guatelli JC: Interactions of HIV-1 nef with the mu subunits of adaptor protein complexes 1, 2, and 3: role of the dileucine-based sorting motif. Virology 2000, 271:9-17.
- [19]Blagoveshchenskaya AD, Thomas L, Feliciangeli SF, Hung CH, Thomas G: HIV-1 Nef downregulates MHC-I by a PACS-1- and PI3K-regulated ARF6 endocytic pathway. Cell 2002, 111:853-866.
- [20]Piguet V, Wan L, Borel C, Mangasarian A, Demaurex N, Thomas G, Trono D: HIV-1 Nef protein binds to the cellular protein PACS-1 to downregulate class I major histocompatibility complexes. Nat Cell Biol 2000, 2:163-167.
- [21]Simons M, Raposo G: Exosomes–vesicular carriers for intercellular communication. Curr Opin Cell Biol 2009, 21:575-581.
- [22]Ali SA, Huang MB, Campbell PE, Roth WW, Campbell T, Khan M, Newman G, Villinger F, Powell MD, Bond VC: Genetic characterization of HIV type 1 Nef-induced vesicle secretion. AIDS Res Hum Retroviruses 2010, 26:173-192.
- [23]Campbell TD, Khan M, Huang MB, Bond VC, Powell MD: HIV-1 Nef protein is secreted into vesicles that can fuse with target cells and virions. Ethn Dis 2008, 18(S2):14-19.
- [24]Lenassi M, Cagney G, Liao M, Vaupotic T, Bartholomeeusen K, Cheng Y, Krogan NJ, Plemenitas A, Peterlin BM: HIV Nef is secreted in exosomes and triggers apoptosis in bystander CD4+ T cells. Traffic (Copenhagen, Denmark) 2010, 11:110-122.
- [25]Muratori C, Cavallin LE, Kratzel K, Tinari A, Muratori C, Cavallin LE, Kratzel K, Tinari AA, Fais S, D’Aloja P, Federico M, Vullo V, Fomina A, et al.: Massive secretion by T cells is caused by HIV Nef in infected cells and by Nef transfer to bystander cells. Cell Host Microbe 2009, 6:218-230.
- [26]Shelton MN, Huang MB, Ali SA, Powell MD, Bond VC: Secretion modification region-derived peptide disrupts HIV-1 Nef’s interaction with mortalin and blocks virus and Nef exosome release. J Virol 2012, 86:406-419.
- [27]Raymond AD, Campbell-Sims TC, Khan M, Lang M, Huang MB, Bond VC, Powell MD: HIV Type 1 Nef is released from infected cells in CD45(+) microvesicles and is present in the plasma of HIV-infected individuals. AIDS Res Human Retroviruses 2011, 27:167-178.
- [28]Arora VK, Molina RP, Foster JL, Blakemore JL, Chernoff J, Fredericksen BL, Garcia JV: Lentivirus Nef specifically activates Pak2. J Virol 2000, 74:11081-11087.
- [29]Janardhan A, Swigut T, Hill B, Myers MP, Skowronski J: HIV-1 Nef binds the DOCK2-ELMO1 complex to activate rac and inhibit lymphocyte chemotaxis. PLoS Biol 2004, 2:E6.
- [30]Krautkramer E, Giese SI, Gasteier JE, Muranyi W, Fackler OT: Human immunodeficiency virus type 1 Nef activates p21-activated kinase via recruitment into lipid rafts. J Virol 2004, 78:4085-4097.
- [31]Pulkkinen K, Renkema GH, Kirchhoff F, Saksela K: Nef associates with p21-activated kinase 2 in a p21-GTPase-dependent dynamic activation complex within lipid rafts. J Virol 2004, 78:12773-12780.
- [32]Renkema GH, Manninen A, Saksela K: Human immunodeficiency virus type 1 Nef selectively associates with a catalytically active subpopulation of p21-activated kinase 2 (PAK2) independently of PAK2 binding to Nck or beta-PIX. J Virol 2001, 75:2154-2160.
- [33]Olivieri KC, Mukerji J, Gabuzda D: Nef-mediated enhancement of cellular activation and human immunodeficiency virus type 1 replication in primary T cells is dependent on association with p21-activated kinase 2. Retrovirology 2011, 8:64. BioMed Central Full Text
- [34]Brown A, Wang X, Sawai E, Cheng-Mayer C: Activation of the PAK-related kinase by human immunodeficiency virus type 1 Nef in primary human peripheral blood lymphocytes and macrophages leads to phosphorylation of a PIX-p95 complex. J Virol 1999, 73:9899-9907.
- [35]Fackler OT, Luo W, Geyer M, Alberts AS, Peterlin BM: Activation of Vav by Nef induces cytoskeletal rearrangements and downstream effector functions. Mol Cell 1999, 3:729-739.
- [36]Linnemann T, Zheng YH, Mandic R, Peterlin BM: Interaction between Nef and phosphatidylinositol-3-kinase leads to activation of p21-activated kinase and increased production of HIV. Virology 2002, 294:246-255.
- [37]Rauch S, Pulkkinen K, Saksela K, Fackler OT: Human immunodeficiency virus type 1 Nef recruits the guanine exchange factor Vav1 via an unexpected interface into plasma membrane microdomains for association with p21-activated kinase 2 activity. J Virol 2008, 82:2918-2929.
- [38]Arold S, Franken P, Strub MP, Hoh F, Benichou S, Benarous R, Dumas C: The crystal structure of HIV-1 Nef protein bound to the Fyn kinase SH3 domain suggests a role for this complex in altered T cell receptor signaling. Structure 1997, 5:1361-1372.
- [39]Greenway A, Azad A, Mills J, McPhee D: Human immunodeficiency virus type 1 Nef binds directly to Lck and mitogen-activated protein kinase, inhibiting kinase activity. J Virol 1996, 70:6701-6708.
- [40]Chu PC, Wu J, Liao XC, Pardo J, Zhao H, Li C, Mendenhall MK, Pali E, Shen M, Yu S, et al.: A novel role for p21-activated protein kinase 2 in T cell activation. J Immunol 2004, 172:7324-7334.
- [41]Fackler OT, Alcover A, Schwartz O: Modulation of the immunological synapse: a key to HIV-1 pathogenesis? Nat Rev Immunol 2007, 7:310-317.
- [42]Haller C, Fackler OT: HIV-1 at the immunological and T-lymphocytic virological synapse. Biol Chem 2008, 389:1253-1260.
- [43]Yokosuka T, Sakata-Sogawa K, Kobayashi W, Hiroshima M, Hashimoto-Tane A, Tokunaga M, Dustin ML, Saito T: Newly generated T cell receptor microclusters initiate and sustain T cell activation by recruitment of Zap70 and SLP-76. Nat Immunol 2005, 6:1253-1262.
- [44]Blanchard N, Lankar D, Faure F, Regnault A, Dumont C, Raposo G, Hivroz C: TCR activation of human T cells induces the production of exosomes bearing the TCR/CD3/zeta complex. J Immunol 2002, 168:3235-3241.
- [45]Haller C, Rauch S, Fackler OT: HIV-1 Nef employs two distinct mechanisms to modulate Lck subcellular localization and TCR induced actin remodeling. PLoS One 2007, 2:e1212.
- [46]Haller C, Rauch S, Michel N, Hannemann S, Lehmann MJ, Keppler OT, Fackler OT: The HIV-1 pathogenicity factor Nef interferes with maturation of stimulatory T-lymphocyte contacts by modulation of N-Wasp activity. J Biol Chem 2006, 281:19618-19630.
- [47]Arhel N, Lehmann M, Clauss K, Nienhaus GU, Piguet V, Kirchhoff F: The inability to disrupt the immunological synapse between infected human T cells and APCs distinguishes HIV-1 from most other primate lentiviruses. J Clin Invest 2009, 119:2965-2975.
- [48]Petit C, Buseyne F, Boccaccio C, Abastado J-P, Heard J-M, Schwartz O: Nef Is Required for Efficient HIV-1 Replication in Cocultures of Dendritic Cells and Lymphocytes. Virology 2001, 286:225-236.
- [49]Izquierdo-useros N, Naranjo-go M, Archer J, Hatch SC, Erkizia I, Puertas MC, Connor JH, Ferna MT, Moore L: Capture and transfer of HIV-1 particles by mature dendritic cells converges with the exosome-dissemination pathway. Blood 2009, 113:2732-2741.
- [50]Sherer NM, Mothes W: Cytonemes and tunneling nanotubules in cell-cell communication and viral pathogenesis. Trends Cell Biol 2008, 18:414-420.
- [51]Sowinski S, Jolly C, Berninghausen O, Purbhoo MA, Chauveau A, Kohler K, Oddos S, Eissmann P, Brodsky FM, Hopkins C, et al.: Membrane nanotubes physically connect T cells over long distances presenting a novel route for HIV-1 transmission. Nat Cell Biol 2008, 10:211-219.
- [52]Van den Broeke C, Radu M, Chernoff J, Favoreel HW: An emerging role for p21-activated kinases (Paks) in viral infections. Trends Cell Biol 2010, 20:160-169.
- [53]Agopian K, Wei BL, Garcia JV, Gabuzda D: A hydrophobic binding surface on the human immunodeficiency virus type 1 Nef core is critical for association with p21-activated kinase 2. J Virol 2006, 80:3050-3061.
- [54]Wang JK, Kiyokawa E, Verdin E, Trono D: The Nef protein of HIV-1 associates with rafts and primes T cells for activation. Proc Natl Acad Sci U S A 2000, 97:394-399.
- [55]Sowa ME, Bennett EJ, Gygi SP, Harper JW: Defining the Human Deubiquitinating Enzyme Interaction Landscape. Cell 2009, 138:389-403.
- [56]Jackson PK: Navigating the Deubiquitinating Proteome with a CompPASS. Cell 2009, 138:222-224.
- [57]The UniProt Consortium: The Universal Protein Resource (UniProt) in 2010. Nucl Acids Res 2010, 38:D142-D148.
- [58]He B, Guo W: The exocyst complex in polarized exocytosis. Curr Opin Cell Biol 2009, 21:537-542.
- [59]Munson M, Novick P: The exocyst defrocked, a framework of rods revealed. Nat Struct Mol Biol 2006, 13:577-581.
- [60]Fortin JF, Barat C, Beausejour Y, Barbeau B, Tremblay MJ: Hyper-responsiveness to stimulation of human immunodeficiency virus-infected CD4+ T cells requires Nef and Tat virus gene products and results from higher NFAT, NF-kappaB, and AP-1 induction. J Biol Chem 2004, 279:39520-39531.
- [61]Witte V, Laffert B, Gintschel P, Krautkramer E, Blume K, Fackler OT, Baur AS: Induction of HIV transcription by Nef involves Lck activation and protein kinase C theta raft recruitment leading to activation of ERK1/2 but not NF kappa B. J Immunol 2008, 181:8425-8432.
- [62]Tuosto L, Marinari B, Andreotti M, Federico M, Piccolella E: Vav exchange factor counteracts the HIV-1 Nef-mediated decrease of plasma membrane GM1 and NF-AT activity in T cells. Eur J Immunol 2003, 33:2186-2196.
- [63]Lipschutz JH, Lingappa VR, Mostov KE: The exocyst affects protein synthesis by acting on the translocation machinery of the endoplasmic reticulum. J Biol Chem 2003, 278:20954-20960.
- [64]von Mering C, Jensen LJ, Snel B, Hooper SD, Krupp M, Foglierini M, Jouffre N, Huynen MA, Bork P: STRING: known and predicted protein-protein associations, integrated and transferred across organisms. Nucleic Acids Res 2005, 33:D433-D437.
- [65]Fielding AB, Schonteich E, Matheson J, Wilson G, Yu X, Hickson GR, Srivastava S, Baldwin SA, Prekeris R, Gould GW: Rab11-FIP3 and FIP4 interact with Arf6 and the exocyst to control membrane traffic in cytokinesis. EMBO J 2005, 24:3389-3399.
- [66]Hase K, Kimura S, Takatsu H, Ohmae M, Kawano S, Kitamura H, Ito M, Watarai H, Hazelett CC, Yeaman C, Ohno H: M-Sec promotes membrane nanotube formation by interacting with Ral and the exocyst complex. Nat Cell Biol 2009, 11:1427-1432.
- [67]Sowinski S, Alakoskela JM, Jolly C, Davis DM: Optimized methods for imaging membrane nanotubes between T cells and trafficking of HIV-1. Methods 2010, 53:27-33.
- [68]Ndolo T, George M, Nguyen H, Dandekar S: Expression of simian immunodeficiency virus Nef protein in CD4+ T cells leads to a molecular profile of viral persistence and immune evasion. Virology 2006, 353:374-387.
- [69]Hyrcza MD, Kovacs C, Loutfy M, Halpenny R, Heisler L, Yang S, Wilkins O, Ostrowski M, Der SD: Distinct transcriptional profiles in ex vivo CD4+ and CD8+ T cells are established early in human immunodeficiency virus type 1 infection and are characterized by a chronic interferon response as well as extensive transcriptional changes in CD8+ T cells. J Virol 2007, 81:3477-3486.
- [70]Madrid R, Janvier K, Hitchin D, Day J, Coleman S, Noviello C, Bouchet J, Benmerah A, Guatelli J, Benichou S: Nef-induced alteration of the early/recycling endosomal compartment correlates with enhancement of HIV-1 infectivity. J Biol Chem 2005, 280:5032-5044.
- [71]Zhao Z-S, Lim JP, Ng Y-W, Lim L, Manser E: The GIT-associated kinase PAK targets to the centrosome and regulates Aurora-A. Mol Cell 2005, 20:237-249.
- [72]Moskalenko S, Tong C, Rosse C, Mirey G, Formstecher E, Daviet L, Camonis J, White MA: Ral GTPases regulate exocyst assembly through dual subunit interactions. J Biol Chem 2003, 278:51743-51748.
- [73]Lim K-H, Brady DC, Kashatus DF, Ancrile BB, Der CJ, Cox AD, Counter CM: Aurora-A phosphorylates, activates, and relocalizes the small GTPase RalA. Mol Cell Biol 2010, 30:508-523.
- [74]Hertzog M, Chavrier P: Cell polarity during motile processes: keeping on track with the exocyst complex. Biochem J 2011, 433:403-409.
- [75]Zuo X, Zhang J, Zhang Y, Hsu SC, Zhou D, Guo W: Exo70 interacts with the Arp2/3 complex and regulates cell migration. Nat Cell Biol 2006, 8:1383-1388.
- [76]Grant BD, Donaldson JG: Pathways and mechanisms of endocytic recycling. Nat Rev Mol Cell Biol 2009, 10:597-608.
- [77]Chaudhry A, Das SR, Jameel S, George A, Bal V, Mayor S, Rath S: HIV-1 Nef induces a Rab11-dependent routing of endocytosed immune costimulatory proteins CD80 and CD86 to the Golgi. Traffic (Copenhagen, Denmark) 2008, 9:1925-1935.
- [78]Zhang XM, Ellis S, Sriratana A, Mitchell CA, Rowe T: Sec15 is an effector for the Rab11 GTPase in mammalian cells. J Biol Chem 2004, 279:43027-43034.
- [79]Alexander M, Bor YC, Ravichandran KS, Hammarskjold ML, Rekosh D: Human immunodeficiency virus type 1 Nef associates with lipid rafts to downmodulate cell surface CD4 and class I major histocompatibility complex expression and to increase viral infectivity. J Virol 2004, 78:1685-1696.
- [80]Balasubramanian N, Meier JA, Scott DW, Norambuena A, White MA, Schwartz MA: RalA-Exocyst Complex Regulates Integrin-Dependent Membrane Raft Exocytosis and Growth Signaling. Curr Biol 2010, 20:75-79.
- [81]Zhou H, Xu M, Huang Q, Gates AT, Zhang XD, Castle JC, Stec E, Ferrer M, Strulovici B, Hazuda DJ, Espeseth AS: Genome-scale RNAi screen for host factors required for HIV replication. Cell Host Microbe 2008, 4:495-504.
- [82]Brass AL, Dykxhoorn DM, Benita Y, Yan N, Engelman A, Xavier RJ, Lieberman J, Elledge SJ: Identification of host proteins required for HIV infection through a functional genomic screen. Science 2008, 319:921-926.
- [83]Baldari CT, Rosenbaum J: Intraflagellar transport: it’s not just for cilia anymore. Curr Opin Cell Biol 2010, 22:75-80.
- [84]Griffiths GM, Tsun A, Stinchcombe JC: The immunological synapse: a focal point for endocytosis and exocytosis. J Cell Biol 2010, 189:399-406.
- [85]Zuo X, Guo W, Lipschutz JH: The Exocyst Protein Sec10 Is Necessary for Primary Ciliogenesis and Cystogenesis In Vitro. Mol Biol Cell 2009, 20:2522-2529.
- [86]Théry C, Ostrowski M, Segura E: Membrane vesicles as conveyors of immune responses. Nat Rev Immunol 2009, 9:581-593.
- [87]Gousset K, Zurzolo C: Tunnelling nanotubes: a highway for prion spreading? Prion 2009, 3:94-98.
- [88]Sattentau Q: Avoiding the void: cell-to-cell spread of human viruses. Nat Rev Microbiol 2008, 6:815-826.
- [89]Wilson AA, Kwok LW, Hovav AH, Ohle SJ, Little FF, Fine A, Kotton DN: Sustained expression of alpha1-antitrypsin after transplantation of manipulated hematopoietic stem cells. Am J Respir Cell Mol Biol 2008, 39:133-141.
- [90]Zufferey R, Nagy D, Mandel RJ, Naldini L, Trono D: Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat Biotechnol 1997, 15:871-875.
- [91]Rho HM, Poiesz B, Ruscetti FW, Gallo RC: Characterization of the reverse transcriptase from a new retrovirus (HTLV) produced by a human cutaneous T-cell lymphoma cell line. Virology 1981, 112:355-360.
- [92]Konig R, Zhou Y, Elleder D, Diamond TL, Bonamy GM, Irelan JT, Chiang CY, Tu BP, De Jesus PD, Lilley CE, et al.: Global analysis of host-pathogen interactions that regulate early-stage HIV-1 replication. Cell 2008, 135:49-60.
- [93]Yeung ML, Houzet L, Yedavalli VS, Jeang KT: A genome-wide short hairpin RNA screening of jurkat T-cells for human proteins contributing to productive HIV-1 replication. J Biol Chem 2009, 284:19463-19473.
- [94]VENNY: An interactive tool for comparing lists with Venn Diagrams. . [http://bioinfogp.cnb.csic.es/tools/venny/index.html webcite]
PDF