期刊论文详细信息
Respiratory Research
Acute oxygen sensing: diverse but convergent mechanisms in airway and arterial chemoreceptors
Paul J Kemp1  Chris Peers1 
[1] University of Leeds, Leeds, UK
关键词: O2 sensing;    neuroepithelial body;    hypoxia;    chemoreceptor;    carotid body;   
Others  :  1227455
DOI  :  10.1186/rr51
 received in 2001-02-20, accepted in 2001-03-01,  发布年份 2001
PDF
【 摘 要 】

Airway neuroepithelial bodies sense changes in inspired O2, whereas arterial O2 levels are monitored primarily by the carotid body. Both respond to hypoxia by initiating corrective cardiorespiratory reflexes, thereby optimising gas exchange in the face of a potentially deleterious O2 supply. One unifying theme underpinning chemotransduction in these tissues is K+ channel inhibition. However, the transduction components, from O2 sensor to K+ channel, display considerable tissue specificity yet result in analogous end points. Here we highlight how emerging data are contributing to a more complete understanding of O2 chemosensing at the molecular level.

【 授权许可】

   
2001 BioMed Central Ltd

【 预 览 】
附件列表
Files Size Format View
20150928102443895.pdf 330KB PDF download
Figure 1. 59KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]Gonzalez C, Almarez L, Obeso A, Rigual R: Carotid body chemoreceptors: from natural stimuli to sensory discharges. Physiol Rev 1994, 74:829-898.
  • [2]Cutz E, Jackson A: Neuroepithelial bodies as airway oxygen sensors. Respir Physiol 1999, 115:201-214.
  • [3]Peers C, Buckler KJ: Transduction of chemostimuli by the type I carotid body cell. J Membr Biol 1995, 144:1-9.
  • [4]Zhang M, Zhong H, Vollmer C, Nurse CA: Co-release of ATP and ACh mediates hypoxic signalling at rat carotid body chemoreceptors. J Physiol 2000, 525:143-158.
  • [5]Lauweryns JM, VanLommel A: Ultrastructure of nerve endings and synaptic junctions in rabbit intrapulmonary neuroepithelial bodies. J Anat 1987, 151:65-65.
  • [6]Lauweryns JM, Cokeleare M: Hypoxia sensitive neuroepithelial bodies intrapulmonary secretory neuroreceptors, modulated by CNS. Z Zellforsch Mikrosk Anat 1973, 145:521-540.
  • [7]Gillan JE, Curran C, O'Rielly E, Cahalane SF, Unwin AR: Abnormal patterns of pulmonary neuroendocrine cells in victims of Sudden Infant Death Syndrome. Paediatrics 1989, 84:828-834.
  • [8]Peers C: Oxygen-sensitive ion channels. Trends Pharmacol Sci 1997, 18:405-408.
  • [9]Lopez-Barneo J, Lopez-Lopez JR, Urena J, Gonzalez C: Chemotransduction in the carotid body: K+ current modulated by pO2 in type I chemoreceptor cells. Science 1988, 241:580-582.
  • [10]Youngson C, Nurse C, Yeger H, Cutz E: Oxygen sensing in airway chemoreceptors. Nature 1993, 365:153-155.
  • [11]Wyatt CN, Wright C, Bee D, Peers C: O2-sensitive K+ currents in carotid-body chemoreceptor cells from normoxic and chronically hypoxic rats and their roles in hypoxic chemotransduction. Proc Natl Acad Sci USA 1995, 92:295-299.
  • [12]O'Kelly I, Peers C, Kemp PJ: Oxygen-sensitive K+ channels in neuroepithelial body-derived small cell carcinoma cells of the human lung. Am J Physiol 1998, 275:L709-L716.
  • [13]Urena J, Fernandez-Chacon R, Benot AR, Alvarez de Toledo G, Lopez-Barneo J: Hypoxia induces voltage-dependent Ca2+ entry and quantal dopamine secretion in carotid body glomus cells. Proc Natl Acad Sci USA 1994, 91:10208-10211.
  • [14]Robertson TP, Hague D, Aaronson PI, Ward JP: Voltage-independent calcium entry in hypoxic pulmonary vasoconstriction of intrapulmonary arteries of the rat. J Physiol 2000, 525:669-680.
  • [15]Archer SL, Weir EK, Reeve HL, Michelakis E: Molecular identification of O2 sensors and O2-sensitive potassium channels in the pulmonary circulation. Adv Exp Med Biol 2000, 475:219-240.
  • [16]Osipenko ON, Tate RJ, Gurney AM: Potential role for kv3.1b channels as oxygen sensors. Circ Res 2000, 86:534-540.
  • [17]Wang D, Youngson C, Wong V, Yeger H, Dinauer MC, Vega-Saenz de Miera E, Rudy B, Cutz E: NADPH-oxidase and hydrogen peroxide sensitive K+ channel may function as an oxygen sensor complex in airway chemoreceptors and small cell lung carcinoma cell lines. Proc Natl Acad Sci USA 1996, 93:13182-13187.
  • [18]Fu XW, Wang D, Nurse C, Dinauer MC, Cutz E: NADPH oxidase is an O2 sensor in airway chemoreceptors: evidence from K+ current modulation in wild type and oxidase-deficient mice. Proc Natl Acad Sci USA 2000, 97:4374-4379.
  • [19]O'Kelly I, Lewis A, Peers C, Kemp PJ: O2 sensing by airway chemoreceptor-derived cells: protein kinase C activation reveals functional evidence for involvement of NADPH oxidase. J Biol Chem 2000, 275:7684-7692.
  • [20]Tauber AI: Protein kinase C and the activation of the human neutrophol NADPH-oxidase. Blood 1987, 69:711-720.
  • [21]Lopez-Lopez JR, Gonzalez C: Time course of K+ current inhibition by low oxygen in chemoreceptor cells of adult rabbit carotid body. Effects of carbon monoxide. FEBS Lett 1992, 299:251-254.
  • [22]Archer SL, Reeve HL, Michelakis E, Puttagunta L, Waite R, Nelson DP, Dinauer MC, Weir EK: O2 sensing is preserved in mice lacking the gp91 phox subunit of NADPH oxidase. Proc Natl Acad Sci USA 1999, 96:7944-7949.
  • [23]Chandel NS, Schumacker PT: Cellular oxygen sensing by mitochondria: old questions, new insight. J Appl Physiol 2000, 88:1880-1889.
  • [24]Duranteau J, Chandel NS, Kulisz A, Shao Z, Schumacker PT: Intracellular signaling by reactive oxygen species during hypoxia in cardiomyocytes. J Biol Chem 1998, 273:11619-11624.
  • [25]Buckler KJ, Vaughan-Jones RD: Effects of mitochondrial uncouplers on intracellular calcium, pH and membrane potential in rat carotid body type I cells. J Physiol 1998, 513:819-833.
  • [26]Lopez-Lopez JR, Peers C: Electrical properties of chemoreceptor cells. In The Carotid Body Chemoreceptors. Edited by Gonza-lez C. Austin: Landes Bioscience; 1997, 65-78.
  • [27]Peers C: Hypoxic suppression of K+ currents in type I carotid body cells: selective effect on the Ca2+-activated K+ current. Neurosci Lett 1990, 119:253-256.
  • [28]Buckler KJ, Williams BA, Honore E: An oxygen-, acid- and anaesthetic-sensitive TASK-like background potassium channel in rat arterial chemoreceptor cells. J Physiol 2000, 525:135-142.
  • [29]Pardal R, Ludewig U, Garcia-Hirschfeld J, Lopez-Barneo J: Secretory responses of intact glomus cells in thin slices of rat carotid body to hypoxia and tetraethylammonium. Proc Natl Acad Sci USA 2000, 97:2361-2366.
  • [30]Fu XW, Nurse C, Wang YT, Cutz E: Selective modulation of membrane currents by hypoxia in intact airway chemoreceptors from neonatal rabbit. J Physiol 1999, 514:139-150.
  • [31]O'Kelly I, Stephens RH, Peers C, Kemp PJ: Potential identification of the O2-sensitive K+ current in a human neuroepithelial body-derived cell line. Am J Physiol 1999, 276:L96-L104.
  • [32]Kemp PJ, O'Kelly I, Lewis A, Peers C: Regulation of K+ currents in a human neuroepithelial body-derived cell line suggests that hTASK1 is an airway O2-sensitive K+ channel. FASEB J 2001, in press.
  • [33]Kemp PJ, Hartness ME, O'Kelly I, Lewis A, Peers C: Antisense depletion of a specific potassium channel in H146 cells indicates that hTASK-1 is an airway oxygen sensing channel. FASEB J 2001, in press.
  • [34]Kemp PJ, Lewis A, Chapman CG, Meadows HJ, Peers C: Direct demonstration that hTASK1 is an O2 sensitive K+ channel. FASEB J 2001, in press.
  文献评价指标  
  下载次数:17次 浏览次数:14次