期刊论文详细信息
Respiratory Research
Imbalance of dendritic cell co-stimulation in COPD
Marek Lommatzsch1  J Christian Virchow1  Katharina Garbe1  Kai Bratke1  Martin Ulrich1  Paul Stoll1 
[1] Abteilung für Pneumologie und Internistische Intensivmedizin, Zentrum für Innere Medizin, Universität Rostock, Ernst-Heydemann-Str. 6, Rostock, 18057, Germany
关键词: Emphysema;    Chronic inflammation;    Dendritic cells;    COPD;   
Others  :  1133501
DOI  :  10.1186/s12931-015-0174-x
 received in 2014-09-18, accepted in 2015-01-19,  发布年份 2015
【 摘 要 】

Background

Dendritic cells (DCs) control immunity and play a role in the pathogenesis of chronic obstructive pulmonary disease (COPD). However, the expression of function-associated surface molecules on circulating DCs in COPD is unknown.

Methods

Four-colour flow cytometry was used to compare blood DC surface molecules of 54 patients with COPD (median age: 59 years; median FEV1: 38% predicted, median CAT score: 24) with two age-matched control groups with normal lung function: 21 current smokers and 21 never-smokers.

Results

Concentrations of plasmacytoid DCs (pDCs) and myeloid DCs (mDCs) and the mDC/pDC ratio did not differ between the groups. The increased expression of BDCA-1, BDCA-3, CD86 and CCR5 on mDCs in patients with COPD did not significantly differ from smokers with normal lung function. In contrast, COPD was specifically characterised by a decreased expression of the anti-inflammatory co-stimulatory molecule PD-L1 on pDCs and an increased expression of the pro-inflammatory co-stimulatory molecule OX40 ligand (OX40L) on mDCs. These changes were not confined to patients with elevated systemic inflammation markers (leukocytes, c-reactive protein, interleukin-6, fibrinogen). The ratio of OX40L to PD-L1 expression (OX40L/PD-L1 ratio), a quantitative measure of imbalanced DC co-stimulation, correlated with the severity of pulmonary emphysema in patients with COPD.

Conclusion

An imbalance of DC co-stimulation might contribute to the pathogenesis of COPD.

【 授权许可】

   
2015 Stoll et al.; licensee BioMed Central.

附件列表
Files Size Format View
Figure 6. 21KB Image download
Figure 5. 31KB Image download
Figure 4. 30KB Image download
Figure 3. 30KB Image download
Figure 2. 28KB Image download
Figure 1. 30KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Brusselle GG, Joos GF, Bracke KR: New insights into the immunology of chronic obstructive pulmonary disease. Lancet 2011, 378:1015-26.
  • [2]Lokke A, Lange P, Scharling H, Fabricius P, Vestbo J: Developing COPD: a 25 year follow up study of the general population. Thorax 2006, 61:935-9.
  • [3]Demedts IK, Bracke KR, Van Pottelberge G, Testelmans D, Verleden GM, Vermassen FE, et al.: Accumulation of dendritic cells and increased CCL20 levels in the airways of patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2007, 175:998-1005.
  • [4]Van Pottelberge GR, Bracke KR, Demedts IK, De Rijck K, Reinartz SM, van Drunen CM, et al.: Selective accumulation of langerhans-type dendritic cells in small airways of patients with COPD. Respir Res 2010, 11:35. BioMed Central Full Text
  • [5]Van Pottelberge GR, Bracke KR, Van den Broeck S, Reinartz SM, van Drunen CM, Wouters EF, et al.: Plasmacytoid dendritic cells in pulmonary lymphoid follicles of patients with COPD. Eur Respir J 2010, 36:781-91.
  • [6]Vassallo R, Walters PR, Lamont J, Kottom TJ, Yi ES, Limper AH: Cigarette smoke promotes dendritic cell accumulation in COPD; a Lung Tissue Research Consortium study. Respir Res 2010, 11:45. BioMed Central Full Text
  • [7]Mori M, Andersson CK, Svedberg KA, Glader P, Bergqvist A, Shikhagaie M, et al.: Appearance of remodelled and dendritic cell-rich alveolar-lymphoid interfaces provides a structural basis for increased alveolar antigen uptake in chronic obstructive pulmonary disease. Thorax 2013, 68:521-31.
  • [8]Tsoumakidou M, Demedts IK, Brusselle GG, Jeffery PK: Dendritic cells in chronic obstructive pulmonary disease: new players in an old game. Am J Respir Crit Care Med 2008, 177:1180-6.
  • [9]Brusselle GG, Demoor T, Bracke KR, Brandsma CA, Timens W: Lymphoid follicles in (very) severe COPD: beneficial or harmful? Eur Respir J 2009, 34:219-30.
  • [10]Bratke K, Lommatzsch M, Julius P, Kuepper M, Kleine HD, Luttmann W, et al.: Dendritic cell subsets in human bronchoalveolar lavage fluid after segmental allergen challenge. Thorax 2007, 62:168-75.
  • [11]Bratke K, Klug M, Bier A, Julius P, Kuepper M, Virchow JC, et al.: Function-associated surface molecules on airway dendritic cells in cigarette smokers. Am J Respir Cell Mol Biol 2008, 38:655-60.
  • [12]Lommatzsch M, Bratke K, Bier A, Julius P, Kuepper M, Luttmann W, et al.: Airway dendritic cell phenotypes in inflammatory diseases of the human lung. Eur Respir J 2007, 30:878-86.
  • [13]Lommatzsch M, Bratke K, Knappe T, Bier A, Dreschler K, Kuepper M, et al.: Acute effects of tobacco smoke on human airway dendritic cells in vivo. Eur Respir J 2010, 35:1130-6.
  • [14]Stoll P, Heinz AS, Bratke K, Bier A, Garbe K, Kuepper M, et al.: Impact of smoking on dendritic cell phenotypes in the airway lumen of patients with COPD. Respir Res 2014, 15:48. BioMed Central Full Text
  • [15]Agusti A, Edwards LD, Rennard SI, MacNee W, Tal-Singer R, Miller BE, et al.: Persistent systemic inflammation is associated with poor clinical outcomes in COPD: a novel phenotype. PLoS One 2012, 7:e37483.
  • [16]Sharpe AH, Wherry EJ, Ahmed R, Freeman GJ: The function of programmed cell death 1 and its ligands in regulating autoimmunity and infection. Nat Immunol 2007, 8:239-45.
  • [17]Gollwitzer ES, Saglani S, Trompette A, Yadava K, Sherburn R, McCoy KD, et al.: Lung microbiota promotes tolerance to allergens in neonates via PD-L1. Nat Med 2014, 20:642-7.
  • [18]Rabe H, Nordstrom I, Andersson K, Lundell AC, Rudin A: Staphylococcus aureus convert neonatal conventional CD4(+) T cells into FOXP3(+) CD25(+) CD127(low) T cells via the PD-1/PD-L1 axis. Immunology 2014, 141:467-81.
  • [19]Saresella M, Calabrese E, Marventano I, Piancone F, Gatti A, Farina E, et al.: A potential role for the PD1/PD-L1 pathway in the neuroinflammation of Alzheimer's disease. Neurobiol Aging 2012, 33:624. e611-622
  • [20]Gehrie E, Van der Touw W, Bromberg JS, Ochando JC: Plasmacytoid dendritic cells in tolerance. Methods Mol Biol 2011, 677:127-47.
  • [21]Kalathil SG, Lugade AA, Pradhan V, Miller A, Parameswaran GI, Sethi S, Thanavala Y: T regulatory cells and PD-1+ T cells contribute to effector T cell dysfunction in COPD patients. Am J Respir Crit Care Med 2014, 190(1):40-50.
  • [22]Kaur D, Brightling C: OX40/OX40 ligand interactions in T-cell regulation and asthma. Chest 2012, 141:494-9.
  • [23]Gauvreau GM, O'Byrne PM, Boulet LP, Wang Y, Cockcroft D, Bigler J, et al.: Effects of an anti-TSLP antibody on allergen-induced asthmatic responses. N Engl J Med 2014, 370:2102-10.
  • [24]Ying S, O'Connor B, Ratoff J, Meng Q, Fang C, Cousins D, et al.: Expression and cellular provenance of thymic stromal lymphopoietin and chemokines in patients with severe asthma and chronic obstructive pulmonary disease. J Immunol 2008, 181:2790-8.
  • [25]Hodge G, Mukaro V, Reynolds PN, Hodge S: Role of increased CD8/CD28(null) T cells and alternative co-stimulatory molecules in chronic obstructive pulmonary disease. Clin Exp Immunol 2011, 166:94-102.
  • [26]Caramori G, Adcock IM, Di Stefano A, Chung KF: Cytokine inhibition in the treatment of COPD. Int J Chron Obstruct Pulmon Dis 2014, 9:397-412.
  • [27]Singh M, Lee SH, Porter P, Xu C, Ohno A, Atmar RL, et al.: Human rhinovirus proteinase 2A induces TH1 and TH2 immunity in patients with chronic obstructive pulmonary disease. J Allergy Clin Immunol 2010, 125:1369-78. e1362
  • [28]Tuder RM, Petrache I: Pathogenesis of chronic obstructive pulmonary disease. J Clin Invest 2012, 122:2749-55.
  • [29]Hou J, Sun Y, Hao Y, Zhuo J, Liu X, Bai P, et al.: Imbalance between subpopulations of regulatory T cells in COPD. Thorax 2013, 68:1131-9.
  • [30]Bracke KR, Demedts IK, Joos GF, Brusselle GG: CC-chemokine receptors in chronic obstructive pulmonary disease. Inflamm Allergy Drug Targets 2007, 6:75-9.
  • [31]Bracke KR, D'Hulst AI, Maes T, Demedts IK, Moerloose KB, Kuziel WA, et al.: Cigarette smoke-induced pulmonary inflammation, but not airway remodelling, is attenuated in chemokine receptor 5-deficient mice. Clin Exp Allergy 2007, 37:1467-79.
  • [32]Di Stefano A, Caramori G, Gnemmi I, Contoli M, Bristot L, Capelli A, et al.: Association of increased CCL5 and CXCL7 chemokine expression with neutrophil activation in severe stable COPD. Thorax 2009, 64:968-75.
  • [33]Capelli A, Di Stefano A, Gnemmi I, Balbo P, Cerutti CG, Balbi B, et al.: Increased MCP-1 and MIP-1beta in bronchoalveolar lavage fluid of chronic bronchitics. Eur Respir J 1999, 14:160-5.
  • [34]Galgani M, Fabozzi I, Perna F, Bruzzese D, Bellofiore B, Calabrese C, et al.: Imbalance of circulating dendritic cell subsets in chronic obstructive pulmonary disease. Clin Immunol 2010, 137:102-10.
  • [35]Demedts IK, Brusselle GG, Vermaelen KY, Pauwels RA: Identification and characterization of human pulmonary dendritic cells. Am J Respir Cell Mol Biol 2005, 32:177-84.
  • [36]Freeman CM, Martinez FJ, Han MK, Ames TM, Chensue SW, Todt JC, et al.: Lung dendritic cell expression of maturation molecules increases with worsening chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2009, 180:1179-88.
  • [37]Dzionek A, Fuchs A, Schmidt P, Cremer S, Zysk M, Miltenyi S, et al.: BDCA-2, BDCA-3, and BDCA-4: three markers for distinct subsets of dendritic cells in human peripheral blood. J Immunol 2000, 165:6037-46.
  文献评价指标  
  下载次数:13次 浏览次数:1次