期刊论文详细信息
Translational Neurodegeneration
Dual destructive and protective roles of adaptive immunity in neurodegenerative disorders
R Lee Mosley1  Howard E Gendelman1  Ken Flanagan2  Katherine A Estes1  Katherine E Olson1  Kristi M Anderson1 
[1] Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, The University of Nebraska Medical Center, Omaha, NE 68198, USA;Prothena Biosciences, Inc., 650 Gateway Boulevard, South San Francisco, CA 94080, USA
关键词: Neuroinflammation;    Effector T cell;    Regulatory T cell;    MCAM;    MPTP;    Migration;    Neuroprotection;    Neurodegeneration;   
Others  :  1130934
DOI  :  10.1186/2047-9158-3-25
 received in 2014-08-20, accepted in 2014-10-28,  发布年份 2014
【 摘 要 】

Inappropriate T cell responses in the central nervous system (CNS) affect the pathogenesis of a broad range of neuroinflammatory and neurodegenerative disorders that include, but are not limited to, multiple sclerosis, amyotrophic lateral sclerosis, Alzheimer’s disease and Parkinson’s disease. On the one hand immune responses can exacerbate neurotoxic responses; while on the other hand, they can lead to neuroprotective outcomes. The temporal and spatial mechanisms by which these immune responses occur and are regulated in the setting of active disease have gained significant recent attention. Spatially, immune responses that affect neurodegeneration may occur within or outside the CNS. Migration of antigen-specific CD4+ T cells from the periphery to the CNS and consequent immune cell interactions with resident glial cells affect neuroinflammation and neuronal survival. The destructive or protective mechanisms of these interactions are linked to the relative numerical and functional dominance of effector or regulatory T cells. Temporally, immune responses at disease onset or during progression may exhibit a differential balance of immune responses in the periphery and within the CNS. Immune responses with predominate T cell subtypes may differentially manifest migratory, regulatory and effector functions when triggered by endogenous misfolded and aggregated proteins and cell-specific stimuli. The final result is altered glial and neuronal behaviors that influence the disease course. Thus, discovery of neurodestructive and neuroprotective immune mechanisms will permit potential new therapeutic pathways that affect neuronal survival and slow disease progression.

【 授权许可】

   
2014 Anderson et al.; licensee BioMed Central Ltd.

附件列表
Files Size Format View
Figure 6. 81KB Image download
Figure 5. 105KB Image download
Figure 4. 110KB Image download
Figure 3. 109KB Image download
Figure 2. 128KB Image download
Figure 1. 129KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Amor S, Peferoen LA, Vogel DY, Breur M, van der Valk P, Baker D, van Noort JM: Inflammation in neurodegenerative diseases–an update. Immunology 2014, 142:151-166.
  • [2]Mosley RL, Hutter-Saunders JA, Stone DK, Gendelman HE: Inflammation and adaptive immunity in Parkinson’s disease. Cold Spring Harb Perspect Med 2012, 2:a009381.
  • [3]Pachter JS, de Vries HE, Fabry Z: The blood–brain barrier and its role in immune privilege in the central nervous system. J Neuropathol Exp Neurol 2003, 62:593-604.
  • [4]Carson MJ, Doose JM, Melchior B, Schmid CD, Ploix CC: CNS immune privilege: hiding in plain sight. Immunol Rev 2006, 213:48-65.
  • [5]Ziv Y, Ron N, Butovsky O, Landa G, Sudai E, Greenberg N, Cohen H, Kipnis J, Schwartz M: Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood. Nat Neurosci 2006, 9:268-275.
  • [6]Engelhardt B: T cell migration into the central nervous system during health and diseas: Different molecular keys allow access to different central nervous system compartments. Clin Exp Neuroimmunol 2010, 1:79-93.
  • [7]Sobel RA, Mitchell ME, Fondren G: Intercellular adhesion molecule-1 (ICAM-1) in cellular immune reactions in the human central nervous system. Am J Pathol 1990, 136:1309-1316.
  • [8]Cannella B, Raine CS: The adhesion molecule and cytokine profile of multiple sclerosis lesions. Ann Neurol 1995, 37:424-435.
  • [9]Bahbouhi B, Berthelot L, Pettre S, Michel L, Wiertlewski S, Weksler B, Romero IA, Miller F, Couraud PO, Brouard S, Laplaud DA, Soulillou JP: Peripheral blood CD4+ T lymphocytes from multiple sclerosis patients are characterized by higher PSGL-1 expression and transmigration capacity across a human blood–brain barrier-derived endothelial cell line. J Leukoc Biol 2009, 86:1049-1063.
  • [10]Kim S, Cho SH, Kim KY, Shin KY, Kim HS, Park CH, Chang KA, Lee SH, Cho D, Suh YH: Alpha-synuclein induces migration of BV-2 microglial cells by up-regulation of CD44 and MT1-MMP. J Neurochem 2009, 109:1483-1496.
  • [11]Klegeris A, Giasson BI, Zhang H, Maguire J, Pelech S, McGeer PL: Alpha-synuclein and its disease-causing mutants induce ICAM-1 and IL-6 in human astrocytes and astrocytoma cells. FASEB J 2006, 20:2000-2008.
  • [12]Reynolds AD, Banerjee R, Liu J, Gendelman HE, Mosley RL: Neuroprotective activities of CD4+CD25+ regulatory T cells in an animal model of Parkinson’s disease. J Leukoc Biol 2007, 82:1083-1094.
  • [13]Reynolds AD, Stone DK, Hutter JA, Benner EJ, Mosley RL, Gendelman HE: Regulatory T cells attenuate Th17 cell-mediated nigrostriatal dopaminergic neurodegeneration in a model of Parkinson’s disease. J Immunol 2010, 184:2261-2271.
  • [14]Banerjee R, Mosley RL, Reynolds AD, Dhar A, Jackson-Lewis V, Gordon PH, Przedborski S, Gendelman HE: Adaptive immune neuroprotection in G93A-SOD1 amyotrophic lateral sclerosis mice. PLoS One 2008, 3:e2740.
  • [15]Ozaki K, Kikly K, Michalovich D, Young PR, Leonard WJ: Cloning of a type I cytokine receptor most related to the IL-2 receptor beta chain. Proc Natl Acad Sci U S A 2000, 97:11439-11444.
  • [16]Romagnani S: T-cell subsets (Th1 versus Th2). Ann Allergy Asthma Immunol 2000, 85:9-18.
  • [17]Simpson E, Yen A, Appel SH: Amyotrophic Lateral Sclerosis. In Neuroimmune Pharmacology. Edited by Ikezu T, Gendelman HE. New York: Springer; 2008:377-388.
  • [18]Fan Z, Zhang Q: Molecular mechanisms of lymphocyte-mediated cytotoxicity. Cell Mol Immunol 2005, 2:259-264.
  • [19]Korn T, Bettelli E, Oukka M, Kuchroo VK: IL-17 and Th17 Cells. Annu Rev Immunol 2009, 27:485-517.
  • [20]Zhou Y, Sonobe Y, Akahori T, Jin S, Kawanokuchi J, Noda M, Iwakura Y, Mizuno T, Suzumura A: IL-9 promotes Th17 cell migration into the central nervous system via CC chemokine ligand-20 produced by astrocytes. J Immunol 2011, 186:4415-4421.
  • [21]Li H, Rostami A: IL-9: basic biology, signaling pathways in CD4+ T cells and implications for autoimmunity. J Neuroimmune Pharmacol 2010, 5:198-209.
  • [22]Zhang N, Pan HF, Ye DQ: Th22 in inflammatory and autoimmune disease: prospects for therapeutic intervention. Mol Cell Biochem 2011, 353:41-46.
  • [23]Corthay A: How do regulatory T cells work? Scand J Immunol 2009, 70:326-336.
  • [24]Wildin RS, Smyk-Pearson S, Filipovich AH: Clinical and molecular features of the immunodysregulation, polyendocrinopathy, enteropathy, X linked (IPEX) syndrome. J Med Genet 2002, 39:537-545.
  • [25]Dittel BN: CD4 T cells: balancing the coming and going of autoimmune-mediated inflammation in the CNS. Brain Behav Immun 2008, 22:421-430.
  • [26]Fletcher JM, Lalor SJ, Sweeney CM, Tubridy N, Mills KH: T cells in multiple sclerosis and experimental autoimmune encephalomyelitis. Clin Exp Immunol 2010, 162:1-11.
  • [27]Severson C, Hafler DA: T-cells in multiple sclerosis. Results Probl Cell Differ 2010, 51:75-98.
  • [28]Prineas J: Pathology of the early lesion in multiple sclerosis. Hum Pathol 1975, 6:531-554.
  • [29]O’Connor KC, Bar-Or A, Hafler DA: The neuroimmunology of multiple sclerosis: possible roles of T and B lymphocytes in immunopathogenesis. J Clin Immunol 2001, 21:81-92.
  • [30]Haghikia A, Gold R: Current and Future Treatments of Multiple Sclerosis. In Multiple Sclerosis Immunology: A Foundation for Current and Future Treatments. Edited by Yamamura T, Gran B. New York: Springer; 2013:357-384.
  • [31]Tzartos JS, Friese MA, Craner MJ, Palace J, Newcombe J, Esiri MM, Fugger L: Interleukin-17 production in central nervous system-infiltrating T cells and glial cells is associated with active disease in multiple sclerosis. Am J Pathol 2008, 172:146-155.
  • [32]Graber JJ, Allie SR, Mullen KM, Jones MV, Wang T, Krishnan C, Kaplin AI, Nath A, Kerr DA, Calabresi PA: Interleukin-17 in transverse myelitis and multiple sclerosis. J Neuroimmunol 2008, 196:124-132.
  • [33]Viglietta V, Baecher-Allan C, Weiner HL, Hafler DA: Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis. J Exp Med 2004, 199:971-979.
  • [34]Haas J, Hug A, Viehover A, Fritzsching B, Falk CS, Filser A, Vetter T, Milkova L, Korporal M, Fritz B, Storch-Hagenlocher B, Krammer PH, Suri-Payer E, Wildemann B: Reduced suppressive effect of CD4+CD25high regulatory T cells on the T cell immune response against myelin oligodendrocyte glycoprotein in patients with multiple sclerosis. Eur J Immunol 2005, 35:3343-3352.
  • [35]Feger U, Luther C, Poeschel S, Melms A, Tolosa E, Wiendl H: Increased frequency of CD4+CD25+ regulatory T cells in the cerebrospinal fluid but not in the blood of multiple sclerosis patients. Clin Exp Immunol 2007, 147:412-418.
  • [36]Fritzsching B, Korporal M, Haas J, Krammer PH, Suri-Payer E, Wildemann B: Similar sensitivity of regulatory T cells towards CD95L-mediated apoptosis in patients with multiple sclerosis and healthy individuals. J Neurol Sci 2006, 251:91-97.
  • [37]Fritzsching B, Haas J, Konig F, Kunz P, Fritzsching E, Poschl J, Krammer PH, Bruck W, Suri-Payer E, Wildemann B: Intracerebral human regulatory T cells: analysis of CD4+CD25+ FOXP3+ T cells in brain lesions and cerebrospinal fluid of multiple sclerosis patients. PLoS One 2011, 6:e17988.
  • [38]Zozulya AL, Wiendl H: The role of regulatory T cells in multiple sclerosis. Nat Clin Pract Neurol 2008, 4:384-398.
  • [39]Huan J, Culbertson N, Spencer L, Bartholomew R, Burrows GG, Chou YK, Bourdette D, Ziegler SF, Offner H, Vandenbark AA: Decreased FOXP3 levels in multiple sclerosis patients. J Neurosci Res 2005, 81:45-52.
  • [40]Venken K, Hellings N, Thewissen M, Somers V, Hensen K, Rummens JL, Medaer R, Hupperts R, Stinissen P: Compromised CD4+ CD25(high) regulatory T-cell function in patients with relapsing-remitting multiple sclerosis is correlated with a reduced frequency of FOXP3-positive cells and reduced FOXP3 expression at the single-cell level. Immunology 2008, 123:79-89.
  • [41]O’Connor RA, Anderton SM: Foxp3+ regulatory T cells in the control of experimental CNS autoimmune disease. J Neuroimmunol 2008, 193:1-11.
  • [42]Kroenke MA, Carlson TJ, Andjelkovic AV, Segal BM: IL-12- and IL-23-modulated T cells induce distinct types of EAE based on histology, CNS chemokine profile, and response to cytokine inhibition. J Exp Med 2008, 205:1535-1541.
  • [43]Dardalhon V, Korn T, Kuchroo VK, Anderson AC: Role of Th1 and Th17 cells in organ-specific autoimmunity. J Autoimmun 2008, 31:252-256.
  • [44]Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M: Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 1995, 155:1151-1164.
  • [45]McGeachy MJ, Stephens LA, Anderton SM: Natural recovery and protection from autoimmune encephalomyelitis: contribution of CD4+CD25+ regulatory cells within the central nervous system. J Immunol 2005, 175:3025-3032.
  • [46]Reddy J, Illes Z, Zhang X, Encinas J, Pyrdol J, Nicholson L, Sobel RA, Wucherpfennig KW, Kuchroo VK: Myelin proteolipid protein-specific CD4+CD25+ regulatory cells mediate genetic resistance to experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 2004, 101:15434-15439.
  • [47]Stephens LA, Gray D, Anderton SM: CD4+CD25+ regulatory T cells limit the risk of autoimmune disease arising from T cell receptor crossreactivity. Proc Natl Acad Sci U S A 2005, 102:17418-17423.
  • [48]Vucic S, Rothstein JD, Kiernan MC: Advances in treating amyotrophic lateral sclerosis: insights from pathophysiological studies. Trends Neurosci 2014, 37:433-442.
  • [49]Zinman L, Cudkowicz M: Emerging targets and treatments in amyotrophic lateral sclerosis. Lancet Neurol 2011, 10:481-490.
  • [50]Lalive PH, Neuhaus O, Benkhoucha M, Burger D, Hohlfeld R, Zamvil SS, Weber MS: Glatiramer acetate in the treatment of multiple sclerosis: emerging concepts regarding its mechanism of action. CNS Drugs 2011, 25:401-414.
  • [51]Benner EJ, Mosley RL, Destache CJ, Lewis TB, Jackson-Lewis V, Gorantla S, Nemachek C, Green SR, Przedborski S, Gendelman HE: Therapeutic immunization protects dopaminergic neurons in a mouse model of Parkinson’s disease. Proc Natl Acad Sci U S A 2004, 101:9435-9440.
  • [52]Henkel JS, Beers DR, Zhao W, Appel SH: Microglia in ALS: the good, the bad, and the resting. J Neuroimmune Pharmacol 2009, 4:389-398.
  • [53]Hickey WF, Hsu BL, Kimura H: T-lymphocyte entry into the central nervous system. J Neurosci Res 1991, 28:254-260.
  • [54]Lewis CA, Manning J, Rossi F, Krieger C: The neuroinflammatory response in ALS: the roles of microglia and T cells. Neurol Res Int 2012, 2012:803701.
  • [55]Troost D, van den Oord JJ, de Jong JM, Swaab DF: Lymphocytic infiltration in the spinal cord of patients with amyotrophic lateral sclerosis. Clin Neuropathol 1989, 8:289-294.
  • [56]Kassmann CM, Lappe-Siefke C, Baes M, Brugger B, Mildner A, Werner HB, Natt O, Michaelis T, Prinz M, Frahm J, Nave KA: Axonal loss and neuroinflammation caused by peroxisome-deficient oligodendrocytes. Nat Genet 2007, 39:969-976.
  • [57]Kawamata T, Akiyama H, Yamada T, McGeer PL: Immunologic reactions in amyotrophic lateral sclerosis brain and spinal cord tissue. Am J Pathol 1992, 140:691-707.
  • [58]Graves MC, Fiala M, Dinglasan LA, Liu NQ, Sayre J, Chiappelli F, van Kooten C, Vinters HV: Inflammation in amyotrophic lateral sclerosis spinal cord and brain is mediated by activated macrophages, mast cells and T cells. Amyotroph Lateral Scler Other Motor Neuron Disord 2004, 5:213-219.
  • [59]Zhang R, Gascon R, Miller RG, Gelinas DF, Mass J, Hadlock K, Jin X, Reis J, Narvaez A, McGrath MS: Evidence for systemic immune system alterations in sporadic amyotrophic lateral sclerosis (sALS). J Neuroimmunol 2005, 159:215-224.
  • [60]Saresella M, Piancone F, Tortorella P, Marventano I, Gatti A, Caputo D, Lunetta C, Corbo M, Rovaris M, Clerici M: T helper-17 activation dominates the immunologic milieu of both amyotrophic lateral sclerosis and progressive multiple sclerosis. Clin Immunol 2013, 148:79-88.
  • [61]Rentzos M, Evangelopoulos E, Sereti E, Zouvelou V, Marmara S, Alexakis T, Evdokimidis I: Alterations of T cell subsets in ALS: a systemic immune activation? Acta Neurol Scand 2012, 125:260-264.
  • [62]Henkel JS, Beers DR, Wen S, Rivera AL, Toennis KM, Appel JE, Zhao W, Moore DH, Powell SZ, Appel SH: Regulatory T-lymphocytes mediate amyotrophic lateral sclerosis progression and survival. EMBO Mol Med 2013, 5:64-79.
  • [63]Beers DR, Zhao W, Liao B, Kano O, Wang J, Huang A, Appel SH, Henkel JS: Neuroinflammation modulates distinct regional and temporal clinical responses in ALS mice. Brain Behav Immun 2011, 25:1025-1035.
  • [64]Liao B, Zhao W, Beers DR, Henkel JS, Appel SH: Transformation from a neuroprotective to a neurotoxic microglial phenotype in a mouse model of ALS. Exp Neurol 2012, 237:147-152.
  • [65]Chiu IM, Chen A, Zheng Y, Kosaras B, Tsiftsoglou SA, Vartanian TK, Brown RH Jr, Carroll MC: T lymphocytes potentiate endogenous neuroprotective inflammation in a mouse model of ALS. Proc Natl Acad Sci U S A 2008, 105:17913-17918.
  • [66]Beers DR, Henkel JS, Zhao W, Wang J, Appel SH: CD4+ T cells support glial neuroprotection, slow disease progression, and modify glial morphology in an animal model of inherited ALS. Proc Natl Acad Sci U S A 2008, 105:15558-15563.
  • [67]Holmoy T: T cells in amyotrophic lateral sclerosis. Eur J Neurol 2008, 15:360-366.
  • [68]Angelov DN, Waibel S, Guntinas-Lichius O, Lenzen M, Neiss WF, Tomov TL, Yoles E, Kipnis J, Schori H, Reuter A, Ludolph A, Schwartz M: Therapeutic vaccine for acute and chronic motor neuron diseases: implications for amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A 2003, 100:4790-4795.
  • [69]Haenggeli C, Julien JP, Mosley RL, Perez N, Dhar A, Gendelman HE, Rothstein JD: Therapeutic immunization with a glatiramer acetate derivative does not alter survival in G93A and G37R SOD1 mouse models of familial ALS. Neurobiol Dis 2007, 26:146-152.
  • [70]Beers DR, Henkel JS, Zhao W, Wang J, Huang A, Wen S, Liao B, Appel SH: Endogenous regulatory T lymphocytes ameliorate amyotrophic lateral sclerosis in mice and correlate with disease progression in patients with amyotrophic lateral sclerosis. Brain 2011, 134:1293-1314.
  • [71]Zhao W, Beers DR, Liao B, Henkel JS, Appel SH: Regulatory T lymphocytes from ALS mice suppress microglia and effector T lymphocytes through different cytokine-mediated mechanisms. Neurobiol Dis 2012, 48:418-428.
  • [72]Boillee S, Vande Velde C, Cleveland DW: ALS: a disease of motor neurons and their nonneuronal neighbors. Neuron 2006, 52:39-59.
  • [73]Boillee S, Yamanaka K, Lobsiger CS, Copeland NG, Jenkins NA, Kassiotis G, Kollias G, Cleveland DW: Onset and progression in inherited ALS determined by motor neurons and microglia. Science 2006, 312:1389-1392.
  • [74]Yamanaka K, Chun SJ, Boillee S, Fujimori-Tonou N, Yamashita H, Gutmann DH, Takahashi R, Misawa H, Cleveland DW: Astrocytes as determinants of disease progression in inherited amyotrophic lateral sclerosis. Nat Neurosci 2008, 11:251-253.
  • [75]Meena-Leist CE, Parker JC Jr: Amyloid deposition in Alzheimer’s disease. Ann Clin Lab Sci 1993, 23:173-177.
  • [76]Querfurth HW, LaFerla FM: Alzheimer’s disease. N Engl J Med 2010, 362:329-344.
  • [77]Togo T, Akiyama H, Iseki E, Kondo H, Ikeda K, Kato M, Oda T, Tsuchiya K, Kosaka K: Occurrence of T cells in the brain of Alzheimer’s disease and other neurological diseases. J Neuroimmunol 2002, 124:83-92.
  • [78]Town T, Tan J, Flavell RA, Mullan M: T-cells in Alzheimer’s disease. Neuromolecular Med 2005, 7:255-264.
  • [79]Li M, Shang DS, Zhao WD, Tian L, Li B, Fang WG, Zhu L, Man SM, Chen YH: Amyloid beta interaction with receptor for advanced glycation end products up-regulates brain endothelial CCR5 expression and promotes T cells crossing the blood–brain barrier. J Immunol 2009, 182:5778-5788.
  • [80]Shalit F, Sredni B, Brodie C, Kott E, Huberman M: T lymphocyte subpopulations and activation markers correlate with severity of Alzheimer’s disease. Clin Immunol Immunopathol 1995, 75:246-250.
  • [81]Larbi A, Pawelec G, Witkowski JM, Schipper HM, Derhovanessian E, Goldeck D, Fulop T: Dramatic shifts in circulating CD4 but not CD8 T cell subsets in mild Alzheimer’s disease. J Alzheimers Dis 2009, 17:91-103.
  • [82]Richartz-Salzburger E, Batra A, Stransky E, Laske C, Kohler N, Bartels M, Buchkremer G, Schott K: Altered lymphocyte distribution in Alzheimer’s disease. J Psychiatr Res 2007, 41:174-178.
  • [83]Bonotis K, Krikki E, Holeva V, Aggouridaki C, Costa V, Baloyannis S: Systemic immune aberrations in Alzheimer’s disease patients. J Neuroimmunol 2008, 193:183-187.
  • [84]Speciale L, Calabrese E, Saresella M, Tinelli C, Mariani C, Sanvito L, Longhi R, Ferrante P: Lymphocyte subset patterns and cytokine production in Alzheimer’s disease patients. Neurobiol Aging 2007, 28:1163-1169.
  • [85]Saresella M, Calabrese E, Marventano I, Piancone F, Gatti A, Alberoni M, Nemni R, Clerici M: Increased activity of Th-17 and Th-9 lymphocytes and a skewing of the post-thymic differentiation pathway are seen in Alzheimer’s disease. Brain Behav Immun 2011, 25:539-547.
  • [86]Minogue AM, Jones RS, Kelly RJ, McDonald CL, Connor TJ, Lynch MA: Age-associated dysregulation of microglial activation is coupled with enhanced blood–brain barrier permeability and pathology in APP/PS1 mice. Neurobiol Aging 2014, 35:1442-1452.
  • [87]Zhang J, Ke KF, Liu Z, Qiu YH, Peng YP: Th17 cell-mediated neuroinflammation is involved in neurodegeneration of abeta1-42-induced Alzheimer’s disease model rats. PLoS One 2013, 8:e75786.
  • [88]Browne TC, McQuillan K, McManus RM, O’Reilly JA, Mills KH, Lynch MA: IFN-gamma Production by amyloid beta-specific Th1 cells promotes microglial activation and increases plaque burden in a mouse model of Alzheimer’s disease. J Immunol 2013, 190:2241-2251.
  • [89]McManus RM, Higgins SC, Mills KH, Lynch MA: Respiratory infection promotes T cell infiltration and amyloid-beta deposition in APP/PS1 mice. Neurobiol Aging 2014, 35:109-121.
  • [90]Fisher Y, Nemirovsky A, Baron R, Monsonego A: Dendritic cells regulate amyloid-beta-specific T-cell entry into the brain: the role of perivascular amyloid-beta. J Alzheimers Dis 2011, 27:99-111.
  • [91]McQuillan K, Lynch MA, Mills KH: Activation of mixed glia by Abeta-specific Th1 and Th17 cells and its regulation by Th2 cells. Brain Behav Immun 2010, 24:598-607.
  • [92]Schenk D, Barbour R, Dunn W, Gordon G, Grajeda H, Guido T, Hu K, Huang J, Johnson-Wood K, Khan K, Kholodenko D, Lee M, Liao Z, Liedberburg I, Motter R, Mutter L, Soriano F, Shopp G, Vasquez N, Vandevert C, Walker S, Wogulis M, Yednock T, Games D, Seubert P: Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 1999, 400:173-177.
  • [93]Bayer AJ, Bullock R, Jones RW, Wilkinson D, Paterson KR, Jenkins L, Millais SB, Donoghue S: Evaluation of the safety and immunogenicity of synthetic Abeta42 (AN1792) in patients with AD. Neurology 2005, 64:94-101.
  • [94]Orgogozo JM, Gilman S, Dartigues JF, Laurent B, Puel M, Kirby LC, Jouanny P, Dubois B, Eisner L, Flitman S, Michel BF, Boada M, Frank A, Hock C: Subacute meningoencephalitis in a subset of patients with AD after Abeta42 immunization. Neurology 2003, 61:46-54.
  • [95]Nicoll JA, Wilkinson D, Holmes C, Steart P, Markham H, Weller RO: Neuropathology of human Alzheimer disease after immunization with amyloid-beta peptide: a case report. Nat Med 2003, 9:448-452.
  • [96]Hirsch EC, Vyas S, Hunot S: Neuroinflammation in Parkinson’s disease. Parkinsonism Relat Disord 2012, 18(Suppl 1):S210-S212.
  • [97]Kurkowska-Jastrzebska I, Wronska A, Kohutnicka M, Czlonkowski A, Czlonkowska A: The inflammatory reaction following 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine intoxication in mouse. Exp Neurol 1999, 156:50-61.
  • [98]Carrithers MD, Visintin I, Kang SJ, Janeway CA Jr: Differential adhesion molecule requirements for immune surveillance and inflammatory recruitment. Brain 2000, 123:1092-1101.
  • [99]Gonzalez-Rey E, Delgado M: Vasoactive intestinal peptide and regulatory T-cell induction: a new mechanism and therapeutic potential for immune homeostasis. Trends Mol Med 2007, 13:241-251.
  • [100]Bas J, Calopa M, Mestre M, Mollevi DG, Cutillas B, Ambrosio S, Buendia E: Lymphocyte populations in Parkinson’s disease and in rat models of parkinsonism. J Neuroimmunol 2001, 113:146-152.
  • [101]Baba Y, Kuroiwa A, Uitti RJ, Wszolek ZK, Yamada T: Alterations of T-lymphocyte populations in Parkinson disease. Parkinsonism Relat Disord 2005, 11:493-498.
  • [102]Saunders JA, Estes KA, Kosloski LM, Allen HE, Dempsey KM, Torres-Russotto DR, Meza JL, Santamaria PM, Bertoni JM, Murman DL, Ali HH, Standaert DG, Mosley RL, Gendelman HE: CD4+ regulatory and effector/memory T cell subsets profile motor dysfunction in Parkinson’s disease. J Neuroimmune Pharmacol 2012, 7:927-938.
  • [103]Stevens CH, Rowe D, Morel-Kopp MC, Orr C, Russell T, Ranola M, Ward C, Halliday GM: Reduced T helper and B lymphocytes in Parkinson’s disease. J Neuroimmunol 2012, 252:95-99.
  • [104]Brochard V, Combadiere B, Prigent A, Laouar Y, Perrin A, Beray-Berthat V, Bonduelle O, Alvarez-Fischer D, Callebert J, Launay JM, Duyckaerts C, Flavell RA, Hirsch EC, Hunot S: Infiltration of CD4+ lymphocytes into the brain contributes to neurodegeneration in a mouse model of Parkinson disease. J Clin Invest 2009, 119:182-192.
  • [105]Hu W-C: Parkinson’s disease is a TH17 dominant autoimmune disorder against accumulated alpha-synuclein. arXiv:14033256. 2013. http://arxiv.org/abs/1403.3256v1 webcite
  • [106]Fiszer U, Mix E, Fredrikson S, Kostulas V, Link H: Parkinson’s disease and immunological abnormalities: increase of HLA-DR expression on monocytes in cerebrospinal fluid and of CD45RO+ T cells in peripheral blood. Acta Neurol Scand 1994, 90:160-166.
  • [107]Kurkowska-Jastrzebska I, Wronska A, Kohutnicka M, Czlonkowski A, Czlonkowska A: MHC class II positive microglia and lymphocytic infiltration are present in the substantia nigra and striatum in mouse model of Parkinson’s disease. Acta Neurobiol Exp (Wars) 1999, 59:1-8.
  • [108]Benner EJ, Banerjee R, Reynolds AD, Sherman S, Pisarev VM, Tsiperson V, Nemachek C, Ciborowski P, Przedborski S, Mosley RL, Gendelman HE: Nitrated alpha-synuclein immunity accelerates degeneration of nigral dopaminergic neurons. PLoS One 2008, 3:e1376.
  • [109]Laurie C, Reynolds A, Coskun O, Bowman E, Gendelman HE, Mosley RL: CD4+ T cells from Copolymer-1 immunized mice protect dopaminergic neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson’s disease. J Neuroimmunol 2007, 183:60-68.
  • [110]Reynolds A, Laurie C, Mosley RL, Gendelman HE: Oxidative stress and the pathogenesis of neurodegenerative disorders. Int Rev Neurobiol 2007, 82:297-325.
  • [111]Kosloski LM, Kosmacek EA, Olson KE, Mosley RL, Gendelman HE: GM-CSF induces neuroprotective and anti-inflammatory responses in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine intoxicated mice. J Neuroimmunol 2013, 265:1-10.
  • [112]Wilson EH, Weninger W, Hunter CA: Trafficking of immune cells in the central nervous system. J Clin Invest 2010, 120:1368-1379.
  • [113]Reboldi A, Coisne C, Baumjohann D, Benvenuto F, Bottinelli D, Lira S, Uccelli A, Lanzavecchia A, Engelhardt B, Sallusto F: C-C chemokine receptor 6-regulated entry of TH-17 cells into the CNS through the choroid plexus is required for the initiation of EAE. Nat Immunol 2009, 10:514-523.
  • [114]Wong D, Prameya R, Dorovini-Zis K: In vitro adhesion and migration of T lymphocytes across monolayers of human brain microvessel endothelial cells: regulation by ICAM-1, VCAM-1, E-selectin and PECAM-1. J Neuropathol Exp Neurol 1999, 58:138-152.
  • [115]Vora AJ, Perry ME, Hobbs C, Dumonde DC, Brown KA: Selective binding of peripheral blood lymphocytes to the walls of cerebral vessels in frozen sections of human brain. J Immunol Methods 1995, 180:165-180.
  • [116]Deshpande P, King IL, Segal BM: IL-12 driven upregulation of P-selectin ligand on myelin-specific T cells is a critical step in an animal model of autoimmune demyelination. J Neuroimmunol 2006, 173:35-44.
  • [117]Flanagan K, Fitzgerald K, Baker J, Regnstrom K, Gardai S, Bard F, Mocci S, Seto P, You M, Larochelle C, Prat A, Chow S, Li L, Zago W, Lorenzana C, Nishioka C, Hoffman J, Botelho R, Willits C, Tanaka K, Johnston J, Yednock T: Laminin-411 is a vascular ligand for MCAM and facilitates TH17 cell entry into the CNS. PLoS One 2012, 7:e40443.
  • [118]Wong D, Dorovini-Zis K: Upregulation of intercellular adhesion molecule-1 (ICAM-1) expression in primary cultures of human brain microvessel endothelial cells by cytokines and lipopolysaccharide. J Neuroimmunol 1992, 39:11-21.
  • [119]Fabry Z, Waldschmidt MM, Hendrickson D, Keiner J, Love-Homan L, Takei F, Hart MN: Adhesion molecules on murine brain microvascular endothelial cells: expression and regulation of ICAM-1 and Lgp 55. J Neuroimmunol 1992, 36:1-11.
  • [120]Dutta G, Zhang P, Liu B: The lipopolysaccharide Parkinson’s disease animal model: mechanistic studies and drug discovery. Fundam Clin Pharmacol 2008, 22:453-464.
  • [121]Hoban DB, Connaughton E, Connaughton C, Hogan G, Thornton C, Mulcahy P, Moloney TC, Dowd E: Further characterisation of the LPS model of Parkinson’s disease: a comparison of intra-nigral and intra-striatal lipopolysaccharide administration on motor function, microgliosis and nigrostriatal neurodegeneration in the rat. Brain Behav Immun 2013, 27:91-100.
  • [122]Tieu K: A guide to neurotoxic animal models of Parkinson’s disease. Cold Spring Harb Perspect Med 2011, 1:a009316.
  • [123]Zhou Y, Wang Y, Kovacs M, Jin J, Zhang J: Microglial activation induced by neurodegeneration: a proteomic analysis. Mol Cell Proteomics 2005, 4:1471-1479.
  • [124]Thomas MP, Chartrand K, Reynolds A, Vitvitsky V, Banerjee R, Gendelman HE: Ion channel blockade attenuates aggregated alpha synuclein induction of microglial reactive oxygen species: relevance for the pathogenesis of Parkinson’s disease. J Neurochem 2007, 100:503-519.
  • [125]Reynolds AD, Glanzer JG, Kadiu I, Ricardo-Dukelow M, Chaudhuri A, Ciborowski P, Cerny R, Gelman B, Thomas MP, Mosley RL, Gendelman HE: Nitrated alpha-synuclein-activated microglial profiling for Parkinson’s disease. J Neurochem 2008, 104:1504-1525.
  • [126]Bassotti G, Maggio D, Battaglia E, Giulietti O, Spinozzi F, Reboldi G, Serra AM, Emanuelli G, Chiarioni G: Manometric investigation of anorectal function in early and late stage Parkinson’s disease. J Neurol Neurosurg Psychiatry 2000, 68:768-770.
  • [127]Reynolds AD, Stone DK, Mosley RL, Gendelman HE: Nitrated {alpha}-synuclein-induced alterations in microglial immunity are regulated by CD4+ T cell subsets. J Immunol 2009, 182:4137-4149.
  • [128]Fisher Y, Nemirovsky A, Baron R, Monsonego A: T cells specifically targeted to amyloid plaques enhance plaque clearance in a mouse model of Alzheimer’s disease. PLoS One 2010, 5:e10830.
  • [129]Man SM, Ma YR, Shang DS, Zhao WD, Li B, Guo DW, Fang WG, Zhu L, Chen YH: Peripheral T cells overexpress MIP-1alpha to enhance its transendothelial migration in Alzheimer’s disease. Neurobiol Aging 2007, 28:485-496.
  • [130]Liu YJ, Guo DW, Tian L, Shang DS, Zhao WD, Li B, Fang WG, Zhu L, Chen YH: Peripheral T cells derived from Alzheimer’s disease patients overexpress CXCR2 contributing to its transendothelial migration, which is microglial TNF-alpha-dependent. Neurobiol Aging 2010, 31:175-188.
  • [131]Fisher Y, Strominger I, Biton S, Nemirovsky A, Baron R, Monsonego A: Th1 polarization of T cells injected into the cerebrospinal fluid induces brain immunosurveillance. J Immunol 2014, 192:92-102.
  • [132]Andersson EC, Christensen JP, Marker O, Thomsen AR: Changes in cell adhesion molecule expression on T cells associated with systemic virus infection. J Immunol 1994, 152:1237-1245.
  • [133]Laschinger M, Engelhardt B: Interaction of alpha4-integrin with VCAM-1 is involved in adhesion of encephalitogenic T cell blasts to brain endothelium but not in their transendothelial migration in vitro. J Neuroimmunol 2000, 102:32-43.
  • [134]Yednock TA, Cannon C, Fritz LC, Sanchez-Madrid F, Steinman L, Karin N: Prevention of experimental autoimmune encephalomyelitis by antibodies against alpha 4 beta 1 integrin. Nature 1992, 356:63-66.
  • [135]Mareckova H, Havrdova E, Krasulova E, Vankova Z, Koberova M, Sterzl I: Natalizumab in the treatment of patients with multiple sclerosis: first experience. Ann N Y Acad Sci 2007, 1110:465-473.
  • [136]Redwine JM, Buchmeier MJ, Evans CF: In vivo expression of major histocompatibility complex molecules on oligodendrocytes and neurons during viral infection. Am J Pathol 2001, 159:1219-1224.
  • [137]Neumann H, Medana IM, Bauer J, Lassmann H: Cytotoxic T lymphocytes in autoimmune and degenerative CNS diseases. Trends Neurosci 2002, 25:313-319.
  • [138]Stone DK, Reynolds AD, Mosley RL, Gendelman HE: Innate and adaptive immunity for the pathobiology of Parkinson’s disease. Antioxid Redox Signal 2009, 11:2151-2166.
  • [139]Boggs JM: Myelin basic protein: a multifunctional protein. Cell Mol Life Sci 2006, 63:1945-1961.
  • [140]Nitsch R, Pohl EE, Smorodchenko A, Infante-Duarte C, Aktas O, Zipp F: Direct impact of T cells on neurons revealed by two-photon microscopy in living brain tissue. J Neurosci 2004, 24:2458-2464.
  • [141]Philips T, Robberecht W: Neuroinflammation in amyotrophic lateral sclerosis: role of glial activation in motor neuron disease. Lancet Neurol 2011, 10:253-263.
  • [142]Huang X, Reynolds AD, Mosley RL, Gendelman HE: CD4+ T cells in the pathobiology of neurodegenerative disorders. J Neuroimmunol 2009, 211:3-15.
  • [143]Barbeito LH, Pehar M, Cassina P, Vargas MR, Peluffo H, Viera L, Estevez AG, Beckman JS: A role for astrocytes in motor neuron loss in amyotrophic lateral sclerosis. Brain Res Brain Res Rev 2004, 47:263-274.
  • [144]Dong Y, Benveniste EN: Immune function of astrocytes. Glia 2001, 36:180-190.
  • [145]Walsh JT, Watson N, Kipnis J: T cells in the central nervous system: messengers of destruction or purveyors of protection? Immunology 2014, 141:340-344.
  • [146]Xu W, Li R, Dai Y, Wu A, Wang H, Cheng C, Qiu W, Lu Z, Zhong X, Shu Y, Kermode AG, Hu X: IL-22 secreting CD4+ T cells in the patients with neuromyelitis optica and multiple sclerosis. J Neuroimmunol 2013, 261:87-91.
  • [147]Li Y, Chu N, Hu A, Gran B, Rostami A, Zhang GX: Increased IL-23p19 expression in multiple sclerosis lesions and its induction in microglia. Brain 2007, 130:490-501.
  • [148]Gong N, Liu J, Reynolds AD, Gorantla S, Mosley RL, Gendelman HE: Brain ingress of regulatory T cells in a murine model of HIV-1 encephalitis. J Neuroimmunol 2011, 230:33-41.
  • [149]Liu J, Gong N, Huang X, Reynolds AD, Mosley RL, Gendelman HE: Neuromodulatory activities of CD4+CD25+ regulatory T cells in a murine model of HIV-1-associated neurodegeneration. J Immunol 2009, 182:3855-3865.
  • [150]Liblau RS, Gonzalez-Dunia D, Wiendl H, Zipp F: Neurons as targets for T cells in the nervous system. Trends Neurosci 2013, 36:315-324.
  • [151]Engelhardt B, Ransohoff RM: Capture, crawl, cross: the T cell code to breach the blood–brain barriers. Trends Immunol 2012, 33:579-589.
  • [152]Stolp HB, Dziegielewska KM: Review: role of developmental inflammation and blood–brain barrier dysfunction in neurodevelopmental and neurodegenerative diseases. Neuropathol Appl Neurobiol 2009, 35:132-146.
  • [153]Jackson-Lewis V, Przedborski S: Protocol for the MPTP mouse model of Parkinson’s disease. Nat Protoc 2007, 2:141-151.
  • [154]Jackson-Lewis V, Jakowec M, Burke RE, Przedborski S: Time course and morphology of dopaminergic neuronal death caused by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Neurodegeneration 1995, 4:257-269.
  • [155]Shih IM: The role of CD146 (Mel-CAM) in biology and pathology. J Pathol 1999, 189:4-11.
  • [156]Rossi B, Angiari S, Zenaro E, Budui SL, Constantin G: Vascular inflammation in central nervous system diseases: adhesion receptors controlling leukocyte-endothelial interactions. J Leukoc Biol 2011, 89:539-556.
  • [157]Sheridan GK, Dev KK: Targeting S1P receptors in experimental autoimmune encephalomyelitis in mice improves early deficits in locomotor activity and increases ultrasonic vocalisations. Sci Rep 2014, 4:5051.
  • [158]Slavin AJ, Zamvil SS: FTY720 and central memory: out of sight, out of mind. Neurology 2010, 75:388-389.
  • [159]Mehling M, Brinkmann V, Antel J, Bar-Or A, Goebels N, Vedrine C, Kristofic C, Kuhle J, Lindberg RL, Kappos L: FTY720 therapy exerts differential effects on T cell subsets in multiple sclerosis. Neurology 2008, 71:1261-1267.
  • [160]Mehling M, Lindberg R, Raulf F, Kuhle J, Hess C, Kappos L, Brinkmann V: Th17 central memory T cells are reduced by FTY720 in patients with multiple sclerosis. Neurology 2010, 75:403-410.
  • [161]Pinschewer DD, Brinkmann V, Merkler D: Impact of sphingosine 1-phosphate modulation on immune outcomes. Neurology 2011, 76:S15-S19.
  • [162]Wu T, Zhang L, Xu K, Sun C, Lei T, Peng J, Liu G, Wang R, Zhao Y: Immunosuppressive drugs on inducing Ag-specific CD4(+)CD25(+)Foxp3(+) Treg cells during immune response in vivo. Transpl Immunol 2012, 27:30-38.
  文献评价指标  
  下载次数:16次 浏览次数:8次