Radiation Oncology | |
PTV margin definition in hypofractionated IGRT of localized prostate cancer using cone beam CT and orthogonal image pairs with fiducial markers | |
Daniel R Zwahlen2  Gabriela Studer1  Yousef Najafi1  Christoph Glanzmann1  Alessandra Tini1  Stephan Kloeck1  Christian Bolesch1  Peter Dimmerling1  Stephanie Lang1  Christoph Oehler2  | |
[1] Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland;Department of Radiation Oncology, Hospital Graubuenden, Chur, Switzerland | |
关键词: Hypofractionation; PTV margin definition; Cone beam CT; VMAT; IGRT; Radiation therapy; Prostate cancer; | |
Others : 1228544 DOI : 10.1186/s13014-014-0229-z |
|
received in 2014-01-28, accepted in 2014-10-03, 发布年份 2014 | |
【 摘 要 】
Purpose
To evaluate PTV margins for hypofractionated IGRT of prostate comparing kV/kV imaging or CBCT.
Patients and methods
Between 2009 and 2012, 20 patients with low- (LR), intermediate- (IR) and high-risk (HR) prostate cancer were treated with VMAT in supine position with fiducial markers (FM), endorectal balloon (ERB) and full bladder. CBCT¿s and kV/kV imaging were performed before and additional CBCT¿s after treatment assessing intra-fraction motion. CTVP for 5 patients with LR and CTVPSV for 5 patients with IR/HR prostate cancer were contoured independently by 3 radiation oncologists using MRI. The van Hark formula (PTV margin =2.5? +0.7?) was applied to calculate PTV margins of prostate/seminal vesicles (P/PSV) using CBCT or FM.
Results
172 and 52 CBCTs before and after RT and 507 kV/kV images before RT were analysed. Differences between FM in CBCT or in planar kV image pairs were below 1 mm. Accounting for both random and systematic uncertainties anisotropic PTV margins were 5-8 mm for P (LR) and 6-11 mm for PSV (IR/HR). Random uncertainties like intra-fraction and inter-fraction (setup) uncertainties were of similar magnitude (0.9-1.4 mm). Largest uncertainty was introduced by CTV delineation (LR: 1-2 mm, IR/HR: 1.6-3.5 mm). Patient positioning using bone matching or ERB-matching resulted in larger PTV margins.
Conclusions
For IGRT CBCT or kV/kV-image pairs with FM are interchangeable in respect of accuracy. Especially for hypofractionated RT, PTV margins can be kept in the range of 5 mm or below if stringent daily IGRT, ideally including prostate tracking, is applied. MR-based CTV delineation optimization is recommended.
【 授权许可】
2014 Oehler et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20151016085228946.pdf | 1547KB | download | |
Figure 3. | 25KB | Image | download |
Figure 2. | 26KB | Image | download |
Figure 1. | 87KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
【 参考文献 】
- [1]Zelefsky MJ, Kollmeier M, Cox B, Fidaleo A, Sperling D, Pei X, Carver B, Coleman J, Lovelock M, Hunt M: Improved clinical outcomes with high-dose image guided radiotherapy compared with non-IGRT for the treatment of clinically localized prostate cancer. Int J Radiat Oncol Biol Phys 2012, 84:125-129.
- [2]Dearnaley DP, Sydes MR, Graham JD, Aird EG, Bottomley D, Cowan RA, Huddart RA, Jose CC, Matthews JH, Millar J, Moore AR, Morgan RC, Russell JM, Scrase CD, Stephens RJ, Syndikus I, Parmar MK: RT01 collaborators: Escalated-dose versus standard-dose conformal radiotherapy in prostate cancer: first results from the MRC RT01 randomised controlled trial. Lancet Oncol 2007, 8:475-487.
- [3]Crehange G, Mirjolet C, Gauthier M, Martin E, Truc G, Peignaux-Casasnovas K, Azelie C, Bonnetain F, Naudy S, Maingon P: Clinical impact of margin reduction on late toxicity and short-term biochemical control for patients treated with daily on-line image guided IMRT for prostate cancer. Radiotherapy and oncology: journal of the European Society for Therapeutic Radiology and Oncology 2012, 103:244-246.
- [4]Langsenlehner T, Doller C, Winkler P, Galle G, Kapp KS: Impact of inter- and intrafraction deviations and residual set-up errors on PTV margins. Different alignment techniques in 3D conformal prostate cancer radiotherapy. Strahlentherapie und Onkologie. Organ der Deutschen Rontgengesellschaft [et al] 2013, 189:321-328.
- [5]Barney BM, Lee RJ, Handrahan D, Welsh KT, Cook JT, Sause WT: Image-guided radiotherapy (IGRT) for prostate cancer comparing kV imaging of fiducial markers with cone beam computed tomography (CBCT). Int J Radiat Oncol Biol Phys 2011, 80:301-305.
- [6]Rasch C, Steenbakkers R, van Herk M: Target definition in prostate, head, and neck. Semin Radiat Oncol 2005, 15:136-145.
- [7]van Herk M, Remeijer P, Rasch C, Lebesque JV: The probability of correct target dosage: dose-population histograms for deriving treatment margins in radiotherapy. Int J Radiat Oncol Biol Phys 2000, 47:1121-1135.
- [8]Dearnaley D: CHHiP: Conventional or hypofractionated high dose intensity modulated radiotherapy for prostate cancer, protocol version 8.0. Sutton, Surrey, UK: Institute of Cancer Research. Clinical Trial & Statistics Unit 2009, 52:?.
- [9]Zwahlen DR, Lang S, Hrbacek J, Glanzmann C, Kloeck S, Najafi Y, Streller T, Studer G, Zaugg K, Luetolf UM: The use of photon beams of a flattening filter-free linear accelerator for hypofractionated volumetric modulated arc therapy in localized prostate cancer. Int J Radiat Oncol Biol Phys 2012, 83:1655-1660.
- [10]Skarsgard D, Cadman P, El-Gayed A, Pearcey R, Tai P, Pervez N, Wu J: Planning target volume margins for prostate radiotherapy using daily electronic portal imaging and implanted fiducial markers. Radiat Oncol 2010, 5:52. BioMed Central Full Text
- [11]van Herk M: Errors and margins in radiotherapy. Semin Radiat Oncol 2004, 14:52-64.
- [12]Nairz O, Merz F, Deutschmann H, Kopp P, Schöller H, Zehentmayr F, Wurstbauer K, Kametriser G, Sedlmayer F: A strategy for the use of image-guided radiotherapy (IGRT) on linear accelerators and its impact on treatment margins for prostate cancer patients. Strahlentherapie und Onkologie. Organ der Deutschen Rontgengesellschaft [et al] 2008, 184:663-667.
- [13]Adamson J, Wu Q, Yan D: Dosimetric effect of intrafraction motion and residual setup error for hypofractionated prostate intensity-modulated radiotherapy with online cone beam computed tomography image guidance. Int J Radiat Oncol Biol Phys 2011, 80:453-461.
- [14]Polat B, Guenther I, Wilbert J, Goebel J, Sweeney RA, Flentje M, Guckenberger M: Intra-fractional uncertainties in image-guided intensity-modulated radiotherapy (IMRT) of prostate cancer. Strahlentherapie und Onkologie. Organ der Deutschen Rontgengesellschaft [et al] 2008, 184:668-673.
- [15]Mak D, Gill S, Paul R, Stillie A, Haworth A, Kron T, Cramb J, Knight K, Thomas J, Duchesne G, Foroudi F: Seminal vesicle interfraction displacement and margins in image guided radiotherapy for prostate cancer. Radiat Oncol 2012, 7:139. BioMed Central Full Text
- [16]Remeijer P, Rasch C, Lebesque JV, van Herk M: A general methodology for three-dimensional analysis of variation in target volume delineation. Med Phys 1999, 26:931-940.
- [17]Khoo EL, Schick K, Plank AW, Poulsen M, Wong WW, Middleton M, Martin JM: Prostate contouring variation: can it be fixed? International Journal of Radiation Oncology, Biology. Physics 2012, 82:1923-1929.
- [18]Lukka H: A randomized pphase II trial of hypofractionated radiotherapy for favorable-risk prostate cancer - RTOG CCOP study. 2013.
- [19]Deutschmann H, Kametriser G, Steininger P, Scherer P, Schöller H, Gaisberger C, Mooslechner M, Mitterlechner B, Weichenberger H, Fastner G, Wurstbauer K, Jeschke S, Forstner R, Sedlmayer F: First clinical release of an online, adaptive, aperture-based image-guided radiotherapy strategy in intensity-modulated radiotherapy to correct for inter- and intrafractional rotations of the prostate. Int J Radiat Oncol Biol Phys 2012, 83:1624-1632.
- [20]Gates LL, Gladstone DJ, Kasibhatla MS, Marshall JF, Seigne JD, Hug E, Hartford AC: Stability of serrated gold coil markers in prostate localization. Journal of Applied Clinical Medical Physics/American College of Medical Physics 2011, 12:3453.
- [21]Piziorska M, Kukolowicz P, Zawadzka A, Pilichowska M, Peczkowski P: Adaptive off-line protocol for prostate external radiotherapy with cone beam computer tomography. Strahlentherapie und Onkologie. Organ der Deutschen Rontgengesellschaft [et al] 2012, 188:1003-1009.