期刊论文详细信息
Proteome Science
Comparative shotgun proteomic analysis of Clostridium acetobutylicum from butanol fermentation using glucose and xylose
Mark G Lefsrud2  Nathan C Verberkmoes1  Robert L Hettich1  Manesh Shah1  Vijaya GS Raghavan2  Kumaran Sivagnanam2 
[1] Oak Ridge National Laboratory, Chemical and Life Sciences Divisions, Oak Ridge, TN, USA;Department of Bioresource Engineering, Macdonald Campus, McGill University, Quebec, Canada
关键词: mass spectrometry;    shotgun proteomics;    Clostridium acetobutylicum;    ABE fermentation;    Butanol;   
Others  :  820177
DOI  :  10.1186/1477-5956-9-66
 received in 2011-06-06, accepted in 2011-10-18,  发布年份 2011
PDF
【 摘 要 】

Background

Butanol is a second generation biofuel produced by Clostridium acetobutylicum through acetone-butanol-ethanol (ABE) fermentation process. Shotgun proteomics provides a direct approach to study the whole proteome of an organism in depth. This paper focuses on shotgun proteomic profiling of C. acetobutylicum from ABE fermentation using glucose and xylose to understand the functional mechanisms of C. acetobutylicum proteins involved in butanol production.

Results

We identified 894 different proteins in C. acetobutylicum from ABE fermentation process by two dimensional - liquid chromatography - tandem mass spectrometry (2D-LC-MS/MS) method. This includes 717 proteins from glucose and 826 proteins from the xylose substrate. A total of 649 proteins were found to be common and 22 significantly differentially expressed proteins were identified between glucose and xylose substrates.

Conclusion

Our results demonstrate that flagellar proteins are highly up-regulated with glucose compared to xylose substrate during ABE fermentation. Chemotactic activity was also found to be lost with the xylose substrate due to the absence of CheW and CheV proteins. This is the first report on the shotgun proteomic analysis of C. acetobutylicum ATCC 824 in ABE fermentation between glucose and xylose substrate from a single time data point and the number of proteins identified here is more than any other study performed on this organism up to this report.

【 授权许可】

   
2011 Sivagnanam et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140712030738300.pdf 637KB PDF download
Figure 3. 24KB Image download
Figure 5. 50KB Image download
Figure 4. 34KB Image download
Figure 3. 25KB Image download
Figure 2. 23KB Image download
Figure 1. 26KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 3.

【 参考文献 】
  • [1]Hüsemann MHW, Papoutsakis ET: Enzymes limiting butanol and acetone formation in continuous and batch cultures of Clostridium acetobutylicum. Applied Microbiology and Biotechnology 1989, 31:435-444.
  • [2]Rogers P: Genetics and biochemistry of Clostridium relevant to development of fermentation processes. Advances in Applied Microbiology 1986, 31:1-60.
  • [3]Jones D, Woods D: Acetone-butanol fermentation revisited. Microbiology and Molecular Biology Reviews 1986, 50:484.
  • [4]Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD: Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 2007, 315:804.
  • [5]Sticklen MB: Plant genetic engineering for biofuel production: towards affordable cellulosic ethanol. Nature Reviews Genetics 2008, 9:433-443.
  • [6]Yanase H, Sato D, Yamamoto K, Matsuda S, Yamamoto S, Okamoto K: Genetic engineering of Zymobacter palmae for production of ethanol from xylose. Applied and environmental microbiology 2007, 73:2592.
  • [7]Compere A, Griffith W: Evaluation of substrates for butanol production. Dev Ind Microbiol;(United States) 1979, 20:509-517.
  • [8]Ounine K, Petitdemange H, Raval G, Gay R: Acetone-butanol production from pentoses by Clostridium acetobutylicum. Biotechnology Letters 1983, 5:605-610.
  • [9]Yu E, Saddler J: Enhanced acetone butanol fermentation by Clostridium acetobutylicum grown on d xylose in the presence of acetic or butyric acid. FEMS Microbiology Letters 1983, 18:103-107.
  • [10]Ezeji T, Qureshi N, Blaschek H: Bioproduction of butanol from biomass: from genes to bioreactors. Current Opinion in Biotechnology 2007, 18:220-227.
  • [11]Green E, Bennett G: Inactivation of an aldehyde/alcohol dehydrogenase gene fromClostridium acetobutylicum ATCC 824. Applied biochemistry and biotechnology 1996, 57:213-221.
  • [12]Mermelstein L, Papoutsakis E, Petersen D, Bennett G: Metabolic engineering of Clostridium acetobutylicum ATCC 824 for increased solvent production by enhancement of acetone formation enzyme activities using a synthetic acetone operon. Biotechnology and bioengineering 1993, 42:1053-1060.
  • [13]Nair R, Papoutsakis E: Expression of plasmid-encoded aad in Clostridium acetobutylicum M5 restores vigorous butanol production. Journal of Bacteriology 1994, 176:5843.
  • [14]Cornillot E, Nair R, Papoutsakis E, Soucaille P: The genes for butanol and acetone formation in Clostridium acetobutylicum ATCC 824 reside on a large plasmid whose loss leads to degeneration of the strain. Journal of Bacteriology 1997, 179:5442.
  • [15]Nolling J, Breton G, Omelchenko M, Makarova K, Zeng Q, Gibson R, Lee H, Dubois J, Qiu D, Hitti J: Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum. Journal of Bacteriology 2001, 183:4823.
  • [16]Anglade P, Demey E, Labas V, Le Caer JP, Chich JF: Towards a proteomic map of Lactococcus lactis NCDO 763. Electrophoresis 2000, 21:2546-2549.
  • [17]Guillot A, Gitton C, Anglade P, Mistou MY: Proteomic analysis of Lactococcus lactis, a lactic acid bacterium. Proteomics 2003, 3:337-354.
  • [18]Qureshi N, Meagher M, Huang J, Hutkins R: Acetone butanol ethanol (ABE) recovery by pervaporation using silicalite-silicone composite membrane from fed-batch reactor of Clostridium acetobutylicum. Journal of Membrane Science 2001, 187:93-102.
  • [19]Verberkmoes N, Russell A, Shah M, Godzik A, Rosenquist M, Halfvarson J, Lefsrud M, Apajalahti J, Tysk C, Hettich R: Shotgun metaproteomics of the human distal gut microbiota. The ISME journal 2008, 3:179-189.
  • [20]Tabb D, McDonald W, Yates J: DTASelect and Contrast: tools for assembling and comparing protein identifications from shotgun proteomics. Journal of proteome research 2002, 1:21-26.
  • [21]Lo I, Denef V, VerBerkmoes N, Shah M, Goltsman D, DiBartolo G, Tyson G, Allen E, Ram R, Detter J: Strain-resolved community proteomics reveals recombining genomes of acidophilic bacteria. Nature 2007, 446:537-541.
  • [22]Ram R, VerBerkmoes N, Thelen M, Tyson G, Baker B, Blake R, Shah M, Hettich R, Banfield J: Community proteomics of a natural microbial biofilm. Science 2005, 308:1915.
  • [23]Eng J, McCormack A, Yates J: An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. Journal of the American Society for Mass Spectrometry 1994, 5:976-989.
  • [24]Apweiler R, Bairoch A, Wu C, Barker W, Boeckmann B, Ferro S, Gasteiger E, Huang H, Lopez R, Magrane M: UniProt: the universal protein knowledgebase. Nucleic acids research 2004, 32:D115.
  • [25]Peng J, Elias J, Thoreen C, Licklider L, Gygi S: Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS) for large-scale protein analysis: the yeast proteome. Journal of proteome research 2003, 2:43-50.
  • [26]Florens L, Carozza MJ, Swanson SK, Fournier M, Coleman MK, Workman JL, Washburn MP: Analyzing chromatin remodeling complexes using shotgun proteomics and normalized spectral abundance factors. Methods 2006, 40:303-311.
  • [27]Zybailov BL, Florens L, Washburn MP: Quantitative shotgun proteomics using a protease with broad specificity and normalized spectral abundance factors. Mol BioSyst 2007, 3:354-360.
  • [28]Zheng YN, Li LZ, Xian M, Ma YJ, Yang JM, Xu X, He DZ: Problems with the microbial production of butanol. Journal of Industrial Microbiology and Biotechnology 2009, 36:1127-1138.
  • [29]Mitchell WJ, Tangney M: Carbohydrate uptake by the phosphotransferase system and other mechanisms. Handbook on Clostridia Boca Raton, Taylor & Francis 2005, 155-175.
  • [30]Saier M Jr, Fagan M, Hoischen C, Reizer J: Transport mechanisms. Bacillus subtilis and other gram-positive bacteria: biochemistry, physiology, and molecular genetics American Society for Microbiology, Washington, DC 1993, 133-156.
  • [31]Steinmetz M: Carbohydrate catabolism: pathways, enzymes, genetic regulation, and evolution. Bacillus subtilis and other gram-positive bacteria: biochemistry, physiology, and molecular genetics American Society for Microbiology, Washington, DC 1993, 157-170.
  • [32]Shimizu T, Ohtani K, Hirakawa H, Ohshima K, Yamashita A, Shiba T, Ogasawara N, Hattori M, Kuhara S, Hayashi H: Complete genome sequence of Clostridium perfringens, an anaerobic flesh-eater. Proceedings of the National Academy of Sciences of the United States of America 2002, 99:996.
  • [33]Wadhams GH, Armitage JP: Making sense of it all: bacterial chemotaxis. Nature Reviews Molecular Cell Biology 2004, 5:1024-1037.
  • [34]Paredes CJ, Alsaker KV, Papoutsakis ET: A comparative genomic view of clostridial sporulation and physiology. Nature Reviews Microbiology 2005, 3:969-978.
  • [35]Doß S, Gröger C, Knauber T, Whitworth DE, Treuner-Lange A: 24 Comparative Genomic Analysis of Signal Transduction Proteins in Clostridia. 2005.
  • [36]Carvalho P, Fischer J, Chen E, Yates J, Barbosa V: PatternLab for proteomics: a tool for differential shotgun proteomics. BMC bioinformatics 2008, 9:316. BioMed Central Full Text
  • [37]Boynton ZL, Bennet G, Rudolph FB: Cloning, sequencing, and expression of clustered genes encoding beta-hydroxybutyryl-coenzyme A (CoA) dehydrogenase, crotonase, and butyryl-CoA dehydrogenase from Clostridium acetobutylicum ATCC 824. Journal of Bacteriology 1996, 178:3015.
  • [38]Wang S, Zhang Y, Dong H, Mao S, Zhu Y, Wang R, Luan G, Li Y: Formic Acid Triggers the" Acid Crash" of Acetone-Butanol-Ethanol Fermentation by Clostridium acetobutylicum. Applied and environmental microbiology 2011, 77:1674.
  • [39]Logan SM: Flagellar glycosylation-a new component of the motility repertoire? Microbiology 2006, 152:1249.
  • [40]Wahlstrom E, Vitikainen M, Kontinen VP, Sarvas M: The extracytoplasmic folding factor PrsA is required for protein secretion only in the presence of the cell wall in Bacillus subtilis. Microbiology 2003, 149:569.
  • [41]Desvaux M, Khan A, Scott-Tucker A, Chaudhuri RR, Pallen MJ, Henderson IR: Genomic analysis of the protein secretion systems in Clostridium acetobutylicum ATCC 824. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research 2005, 1745:223-253.
  • [42]Yu Y, Tangney M, Aass HC, Mitchell WJ: Analysis of the mechanism and regulation of lactose transport and metabolism in Clostridium acetobutylicum ATCC 824. Applied and environmental microbiology 2007, 73:1842.
  • [43]Schaffer S, Isci N, Zickner B, Dürre P: Changes in protein synthesis and identification of proteins specifically induced during solventogenesis in Clostridium acetobutylicum. Electrophoresis 2002, 23:110.
  • [44]Sullivan L, Bennett GN: Proteome analysis and comparison of Clostridium acetobutylicum ATCC 824 and Spo0A strain variants. Journal of Industrial Microbiology and Biotechnology 2006, 33:298-308.
  • [45]Mao S, Luo Y, Zhang T, Li J, Bao G, Zhu Y, Chen Z, Zhang Y, Li Y, Ma Y: Proteome reference map and comparative proteomic analysis between a wild type Clostridium acetobutylicum DSM 1731 and its mutant with enhanced butanol tolerance and butanol yield. Journal of proteome research 2010, 9:3046-3061.
  • [46]Mao S, Luo Y, Bao G, Zhang Y, Li Y, Ma Y: Comparative analysis on the membrane proteome of Clostridium acetobutylicum wild type strain and its butanol-tolerant mutant. Mol BioSyst 2011, 7:1660-1667.
  • [47]Janssen H, Döring C, Ehrenreich A, Voigt B, Hecker M, Bahl H, Fischer RJ: A proteomic and transcriptional view of acidogenic and solventogenic steady-state cells of Clostridium acetobutylicum in a chemostat culture. Applied Microbiology and Biotechnology 2010, 1-18.
  • [48]Yuan J, Zhu L, Liu X, Li T, Zhang Y, Ying T, Wang B, Wang J, Dong H, Feng E: A proteome reference map and proteomic analysis of Bifidobacterium longum NCC2705. Molecular & Cellular Proteomics 2006, 5:1105.
  • [49]Hansmeier N, Chao TC, Daschkey S, Müsken M, Kalinowski J, Pühler A, Tauch A: A comprehensive proteome map of the lipid requiring nosocomial pathogen Corynebacterium jeikeium K411. Proteomics 2007, 7:1076-1096.
  • [50]Bernardini G, Renzone G, Comanducci M, Mini R, Arena S, D'Ambrosio C, Bambini S, Trabalzini L, Grandi G, Martelli P: Proteome analysis of Neisseria meningitidis serogroup A. Proteomics 2004, 4:2893-2926.
  • [51]Liedert C, Bernhardt J, Albrecht D, Voigt B, Hecker M, Salkinoja Salonen M, Neubauer P: Two dimensional proteome reference map for the radiation resistant bacterium Deinococcus geothermalis. Proteomics 2010, 10:555-563.
  • [52]Wang J, Ying T, Wang H, Shi Z, Li M, He K, Feng E, Yuan J, Li T: 2 D reference map of Bacillus anthracis vaccine strain A16R proteins. Proteomics 2005, 5:4488-4495.
  • [53]Ottemann KM, Alexander RP, Lowenthal AC, Harshey RM: CheV: CheW-like coupling proteins at the core of the chemotaxis signaling network. Trends in microbiology 2010, 18:494-503.
  • [54]Fredrick KL, Helmann JD: Dual chemotaxis signaling pathways in Bacillus subtilis: a sigma D-dependent gene encodes a novel protein with both CheW and CheY homologous domains. Journal of Bacteriology 1994, 176:2727.
  • [55]Rosario M, Fredrick KL, Ordal GW, Helmann JD: Chemotaxis in Bacillus subtilis requires either of two functionally redundant CheW homologs. Journal of Bacteriology 1994, 176:2736.
  • [56]Gutierrez NA, Maddox IS: Role of chemotaxis in solvent production by Clostridium acetobutylicum. Applied and environmental microbiology 1987, 53:1924.
  • [57]Petersen DJ, Bennett GN: Enzymatic characterization of a nonmotile, nonsolventogenicClostridium acetobutylicum ATCC 824 mutant. Current Microbiology 1991, 23:253-258.
  • [58]Lyristis M, Boynton ZL, Petersen D, Kan Z, Bennett GN, Rudolph FB: Cloning, sequencing, and characterization of the gene encoding flagellin, flaC, and the post-translational modification of flagellin, FlaC, from Clostridium acetobutylicum ATCC824. Anaerobe 2000, 6:69-79.
  • [59]Grimmler C, Held C, Liebl W, Ehrenreich A: Transcriptional analysis of catabolite repression in Clostridium acetobutylicum growing on mixtures of d-glucose and d-xylose. Journal of biotechnology 2010, 150:315-323.
  • [60]Ezeji T, Blaschek HP: Fermentation of dried distillers' grains and solubles (DDGS) hydrolysates to solvents and value-added products by solventogenic clostridia. Bioresource technology 2008, 99:5232-5242.
  • [61]Tomas CA, Beamish J, Papoutsakis ET: Transcriptional analysis of butanol stress and tolerance in Clostridium acetobutylicum. Journal of Bacteriology 2004, 186:2006.
  文献评价指标  
  下载次数:86次 浏览次数:50次