期刊论文详细信息
Retrovirology
The decline of human endogenous retroviruses: extinction and survival
Robert Belshaw3  Daniel Blanco-Melo2  Gkikas Magiorkinis1 
[1] Department of Hygiene, Epidemiology and Medical Statistics, Medical School, University of Athens, Athens, Greece;The Aaron Diamond AIDS Research Center, 455 First Avenue, New York 10016, NY, USA;School of Biomedical and Healthcare Sciences, Plymouth University, Plymouth PL4 8AA, UK
关键词: Life history traits;    Evolution;    XRV;    ERV;    HERV-K;    Endogenous retrovirus;   
Others  :  1131917
DOI  :  10.1186/s12977-015-0136-x
 received in 2014-10-01, accepted in 2015-01-06,  发布年份 2015
PDF
【 摘 要 】

Background

Endogenous Retroviruses (ERVs) are retroviruses that over the course of evolution have integrated into germline cells and eventually become part of the host genome. They proliferate within the germline of their host, making up ~5% of the human and mouse genome sequences. Several lines of evidence have suggested a decline in the rate of ERV integration into the human genome in recent evolutionary history but this has not been investigated quantitatively or possible causes explored.

Results

By dating the integration of ERV loci in 40 mammal species, we show that the human genome and that of other hominoids (great apes and gibbons) have experienced an approximately four-fold decline in the ERV integration rate over the last 10 million years. A major cause is the recent extinction of one very large ERV lineage (HERV-H), which is responsible for most of the integrations over the last 30 million years. The decline however affects most other ERV lineages. Only about 10% of the decline might be attributed to an accompanying increase in body mass (a trait we have shown recently to be negatively correlated with ERV integration rate). Humans are unusual compared to related species – Old World monkeys, great apes and gibbons – in (a) having not acquired any new ERV lineages during the last 30 million years and (b) the possession of an old ERV lineage that has continued to replicate up until at least the last few hundred thousand years – the potentially medically significant HERVK(HML2).

Conclusions

The human genome shares with the genome of other great apes and gibbons a recent decline in ERV integration that is not typical of other primates and mammals. The human genome differs from that of related species both in maintaining up until at least recently a replicating old ERV lineage and in not having acquired any new lineages. We speculate that the decline in ERV integration in the human genome has been exacerbated by a relatively low burden of horizontally-transmitted retroviruses and subsequent reduced risk of endogenization.

【 授权许可】

   
2015 Magiorkinis et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150303115850124.pdf 1422KB PDF download
acp-16-5721-2016.pdf 13864KB PDF download
Figure 3. 71KB Image download
Figure 1. 21KB Image download
【 图 表 】

Figure 1.

Figure 3.

【 参考文献 】
  • [1]Dewannieux M, Heidmann T: Endogenous retroviruses: acquisition, amplification and taming of genome invaders. Curr Opin Virol 2013, 3:646-56.
  • [2]Tristem M: Identification and characterization of novel human endogenous retrovirus families by phylogenetic screening of the Human Genome Mapping Project database. J Virol 2000, 74:3715-30.
  • [3]Belshaw R, Pereira V, Katzourakis A, Talbot G, Paces J, Burt A, et al.: Long-term reinfection of the human genome by endogenous retroviruses. Proc Natl Acad Sci U S A 2004, 101:4894-9.
  • [4]Mayer J, Blomberg J, Seal RL: A revised nomenclature for transcribed human endogenous retroviral loci. Mob DNA 2011, 2:7. BioMed Central Full Text
  • [5]Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al.: Initial sequencing and analysis of the human genome. Nature 2001, 409:860-921.
  • [6]Jern P, Coffin JM: Effects of retroviruses on host genome function. Annu Rev Genet 2008, 42:709-32.
  • [7]Stoye JP: The pathogenic potential of endogenous retroviruses: a sceptical view. Trends Microbiol 1999, 7:430. 430
  • [8]Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal P, et al.: Initial sequencing and comparative analysis of the mouse genome. Nature 2002, 420:520-62.
  • [9]Belshaw R, Dawson ALA, Woolven-Allen J, Redding J, Burt A, Tristem M: Genomewide screening reveals high levels of insertional polymorphism in the human endogenous retrovirus family HERV-K(HML2): implications for present-day activity. J Virol 2005, 79:12507-14.
  • [10]Johnson WE, Coffin JM: Constructing primate phylogenies from ancient retrovirus sequences. Proc Natl Acad Sci U S A 1999, 96:10254-60.
  • [11]Magiorkinis G, Gifford RJ, Katzourakis A, De Ranter J, Belshaw R: Env-less endogenous retroviruses are genomic superspreaders. Proc Natl Acad Sci U S A 2012, 109:7385-90.
  • [12]Katzourakis A, Magiorkinis G, Lim AG, Gupta S, Belshaw R, Gifford R: Larger mammalian body size leads to lower retroviral activity. PLoS Pathog 2014, 10:e1004214.
  • [13]Subramanian RP, Wildschutte JH, Russo C, Coffin JM: Identification, characterization, and comparative genomic distribution of the HERV-K (HML-2) group of human endogenous retroviruses. Retrovirology 2011, 8:90. BioMed Central Full Text
  • [14]Marchi E, Kanapin A, Magiorkinis G, Belshaw R: Unfixed endogenous retroviral insertions in the human population. J Virol 2014, 88:9529-37.
  • [15]Magiorkinis G, Belshaw R, Katzourakis A: “There and back again”: revisiting the pathophysiological roles of human endogenous retroviruses in the post-genomic era. Phil Trans Roy Soc B 2013, 368:20120504.
  • [16]Young GR, Stoye JP, Kassiotis G: Are human endogenous retroviruses pathogenic? An approach to testing the hypothesis. BioEssays 2013, 35:794-803.
  • [17]Bhardwaj N, Maldarelli F, Mellors J, Coffin JM: HIV-1 infection leads to increased transcription of human endogenous retrovirus HERV-K (HML-2) proviruses in vivo but not to increased virion production. J Virol 2014, 88:11108-20.
  • [18]Cherkasova E, Weisman Q, Childs RW: Endogenous retroviruses as targets for antitumour immunity in renal cell cancer and other tumours. Front Oncol 2013, 3:243.
  • [19]Kraus B, Fischer K, Bűchner SM, Wels WS, Lőwer R, Sliva K, et al.: Vaccination directed against the Human Endogenous Retrovirus-K envelope protein inhibits tumor growth in a murine model system. PLoS One 2013, 8:e72756.
  • [20]Sacha JB, Kim I-J, Chen L, Ullah JH, Goodwin DA, Simmons HA, et al.: Vaccination with cancer-and HIV infection-associated endogenous retrotransposable elements is safe and immunogenic. J Immunol 2012, 189:1467-79.
  • [21]Steinhuber S, Brack M, Hunsmann G, Schwelberger H, Dierich MP, Vogetseder W: Distribution of human endogenous retrovirus HERV-K genomes in humans and different primates. Hum Genet 1995, 96:188-92.
  • [22]Yohn CT, Jiang Z, McGrath SD, Hayden KE, Khaitovich P, Johnson ME, et al.: Lineage-specific expansions of retroviral insertions within the genomes of African great apes but not humans and orangutans. PLoS Biol 2005, 3:e110.
  • [23]van der Kuyl AC, Dekker JT, Goudsmit J: Full-length proviruses of Baboon Endogenous Virus (BaEV) and dispersed BaEV Reverse Transcriptase retroelements in the genome of baboon species. J Virol 1995, 69:5917-24.
  • [24]van der Kuyl AC, Mang R, Dekker JT, Goudsmit J: Complete nucleotide sequence of simian endogenous type D retrovirus with intact genome organization: Evidence for ancestry to simian retrovirus and baboon endogenous virus. J Virol 1997, 71:3666-76.
  • [25]Belshaw R, Watson J, Katzourakis A, Howe A, Woolven-Allen J, Burt A, et al.: Rate of recombinational deletion among human endogenous retroviruses. J Virol 2007, 81:9437-42.
  • [26]Nellåker C, Keane TM, Yalcin B, Wong K, Agam A, Belgard TG, et al. The genomic landscape shaped by selection on transposable elements across 18 mouse strains. Genome Biol. 2012;13: R45.
  • [27]Gebo DL, Malit NR, Nengo IO: New proconsuloid postcranials from the early Miocene of Kenya. Primates 2009, 50:311-9.
  • [28]Ishida H, Kunimatsu Y, Takano T, Nakano Y, Nakatsukasa M: Nacholapithecus skeleton from the Middle Miocene of Kenya. J Hum Evol 2004, 46:69-103.
  • [29]Robson SL, Wood B: Hominin life history: reconstruction and evolution. J Anat 2008, 212:394-425.
  • [30]Marsh AK, Willer DO, Skokovets O, Iwajomo OH, Chan JK, MacDonald KS: Evaluation of Cynomolgus Macaque (Macaca fascicularis) endogenous retrovirus expression following Simian Immunodeficiency Virus infection. PLoS One 2012, 7:e40158.
  • [31]Sheppard NC, Jones RB, Burwitz BJ, Nimityongskul FA, Newman LP, Buechler MB, et al.: Vaccination against endogenous retrotransposable element consensus sequences does not protect Rhesus Macaques from SIVsmE660 infection and replication. PLoS One 2014, 9:e92012.
  • [32]Romano CM, de Melo FL, Corsini MAB, Holmes EC, Zanotto PMA: Demographic histories of ERV-K in humans, chimpanzees and rhesus monkeys. PLoS One 2007, 2:e1026.
  • [33]Locatelli S, Peeters M: Cross-species transmission of simian retroviruses: how and why they could lead to the emergence of new diseases in the human population. AIDS 2012, 26:659-73.
  • [34]Keele BF, Jones JH, Terio KA, Estes JD, Rudicell RS, Wilson ML, et al.: Increased mortality and AIDS-like immunopathology in wild chimpanzees infected with SIVcpz. Nature 2009, 460:515-9.
  • [35]Li Y, Ndjango J-B, Learn GH, Ramirez MA, Keele BF, Bibollet-Ruche F, et al.: Eastern chimpanzees, but not bonobos, represent a simian immunodeficiency virus reservoir. J Virol 2010, 86:10776-91.
  • [36]Neel C, Etienne L, Li Y, Takehisa J, Rudicell RS, Bass IN, et al.: Molecular epidemiology of simian immunodeficiency virus infection in wild-living gorillas. J Virol 2010, 84:1464-76.
  • [37]LeBreton M, Switzer WM, Djoko CF, Gillis A, Jia H, Sturgeon MM, et al.: A gorilla reservoir for human T-lymphotropic virus type 4. Emerg Microbes Infect 2014, 3:e7.
  • [38]Leendertz FH, Boesch C, Ellerbrok H, Rietschel W, Couacy-Hymann E, Pauli G: Non-invasive testing reveals a high prevalence of simian T-lymphotropic virus type 1 antibodies in wild adult chimpanzees of the Taï National Park. Côte d’Ivoire. J Gen Virol 2004, 85:3305-12.
  • [39]Liègeois F, Bouè V, Mouacha F, Butel C, Ondo BM, Pourrut X, et al. New STLV-3 strains and a divergent SIVmus strain identified in non-human primate bushmeat in Gabon. Retrovirology 2012; 9:28.
  • [40]Hussain AI, Shanmugam V, Bhullar VB, Beer BE, Vallet D, Gautier-Hion A, et al.: Screening for simian foamy virus infection by using a combined antigen Western blot assay: evidence for a wide distribution among Old World primates and identification of four new divergent viruses. Virology 2003, 309:248-57.
  • [41]Calattini S, Nerrienet E, Mauclère P, Georges-Courbot MC, Saïb A, Gessain A: Natural simian foamy virus infection in wild-caught gorillas, mandrills and drills from Cameroon and Gabon. J Gen Virol 2004, 85:3313-7.
  • [42]Liu W, Worobey M, Li Y, Keele BF, Bibollet-Ruche F, Guo Y, et al.: Molecular ecology and natural history of simian foamy virus infection in wild-living chimpanzees. PLoS Path 2008, 4:e1000097.
  • [43]Silvestri G, Paiardini M, Pandrea I, Lederman MM, Sodora DL: Understanding the benign nature of SIV infection in natural hosts. J Clin Invest 2007, 117:3148-54.
  • [44]Allan JS, Short M, Taylor ME, Su S, Hirsch VM, Johnson PR, et al.: Species-specific diversity among simian immunodeficiency viruses from African green monkeys. J Virol 1991, 65:2816-28.
  • [45]Switzer WM, Salemi M, Shanmugam V, Gao F, Cong ME, Kuiken C, et al.: Ancient co-speciation of simian foamy viruses and primates. Nature 2005, 434:376-80.
  • [46]Slattery JP, Franchini G, Gessain A: Genomic evolution, patterns of global dissemination, and interspecies transmission of human and simian T-cell leukemia/lymphotropic viruses. Genome Res 1999, 9:525-40.
  • [47]Mauclère P, Afonso PV, Meertens L, Plancoulaine S, Calattini S, Froment A, et al.: HTLV-2B strains, similar to those found in several amerindian tribes, are endemic in central African Bakola pygmies. J Infect Dis 2011, 203:1316-23.
  • [48]Plavcan JM: Sexual size dimorphism, canine dimorphism, and male-male competition in primates: where do humans fit in? Hum Nat 2012, 23:45-67.
  • [49]Drucker E, Alcabes PG, Marx PA: The injection century: massive unsterile injections and the emergence of human pathogens. Lancet 2001, 358:1989-92.
  • [50]Arnaud F, Caporale M, Varela M, Biek R, Chessa B, Alberti A, et al.: A paradigm for virus-host coevolution: Sequential counter-adaptations between endogenous and exogenous retroviruses. PLoS Pathog 2007, 3:e170.
  • [51]Denesvre C, Soubieux D, Pin G, Hue D, Dambrine G: Interference between avian endogenous ev/J 4.1 and exogenous ALV-J retroviral envelopes. J Gen Virol 2003, 84:3233-8.
  • [52]Monde K, Contreras-Galindo R, Kaplan MH, Markovitz DM, Ono A: Human Endogenous Retrovirus K Gag coassembles with HIV-1 Gag and reduces the release efficiency and infectivity of HIV-1. J Virol 2012, 86:11194-208.
  • [53]Lee YN, Malim MH, Bieniasz PD: Hypermutation of an ancient human retrovirus by APOBEC3G. J Virol 2008, 82:8762-70.
  • [54]Armitage AE, Katzourakis A, de Oliveira T, Welch JJ, Belshaw R, Bishop KN, et al.: Conserved footprints of APOBEC3G on hypermutated human immunodeficiency virus type 1 and human endogenous retrovirus HERV-K(HML2) sequences. J Virol 2008, 82:8743-61.
  • [55]Perez-Caballero D, Soll SJ, Bieniasz PD: Evidence for restriction of ancient primate gammaretroviruses by APOBEC3 but not TRIM5α proteins. PLoS Path 2008, 4:e1000181.
  • [56]Kaiser SM, Malik HS, Emerman M: Restriction of an extinct retrovirus by the human TRIM5α antiviral protein. Science 2007, 316:1756-8.
  • [57]Stoye JP: Studies of endogenous retroviruses reveal a continuing evolutionary saga. Nature Rev Microbiol 2012, 10:395-406.
  • [58]Volkman HE, Stetson DB: The enemy within: endogenous retroelements and autoimmune disease. Nature Immunol 2014, 15:415-22.
  • [59]Kijima TE, Innan H: On the estimation of the insertion time of LTR Retrotransposable Elements. Mol Biol Evol 2010, 27:896-904.
  • [60]Kumar S, Subramanian S: Mutation rates in mammalian genomes. Proc Natl Acad Sci U S A 2002, 99:803-8.
  • [61]Rice P, Longden I, Bleasby A: EMBOSS: The European Molecular Biology Open Software Suite. Trends Genet 2000, 16:276-7.
  • [62]R Development Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria; 2009.
  • [63]Drummond AJ, Rambaut A: BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 2007, 7:214. BioMed Central Full Text
  • [64]Drummond AJ, Suchard MA, Xie D, Rambaut A: Bayesian Phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 2007, 29:1969-73.
  • [65]Yang Z: Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods. J Mol Evol 1994, 39:306-14.
  • [66]Drummond AJ, Ho SYW, Phillips MJ, Rambaut A: Relaxed phylogenetics and dating with confidence. PLoS Biol 2006, 4:e88.
  • [67]Perelman P, Johnson WE, Roos C, Seuànez HN, Horvath JE, Moreira MA, et al.: A molecular phylogeny of living primates. PLoS Genet 2011, 7:e1001342.
  • [68]Lebedev YB, Belonovitch OS, Zybrova NV, Khil PP, Kurdyukov SG, Vinogradova TV, et al.: Differences in HERV-K LTR insertions in orthologous loci of humans and great apes. Gene 2000, 247:265-77.
  • [69]Subramanian S, Kumar S: Neutral substitutions occur at a faster rate in exons than in noncoding DNA in primate genomes. Genome Res 2003, 13:838-44.
  • [70]Cooper N, Purvis A: Body size evolution in mammals: complexity in tempo and mode. Am Nat 2010, 175:727-38.
  文献评价指标  
  下载次数:15次 浏览次数:0次