Particle and Fibre Toxicology | |
Glossina palpalis palpalis populations from Equatorial Guinea belong to distinct allopatric clades | |
Jean-Mathieu Bart2  Agustin Benito3  Joao Pinto4  Miguel Navarro2  Pedro Ndongo-Asumu5  Policarpo Ricardo Ncogo-Ada5  Nicolas Ndong-Mabale5  Paloma Nebreda3  Jenny Knapp1  Jorge Cano6  Carlos Cordon-Obras2  | |
[1] Laboratoire de Parasitologie, UMR/CNRS Chrono-environnement 6249, 19 rue Ambroise Paré, Besançon Cedex 25030, France;Instituto de Parasitologia y Biomedicina Lopez Neyra, CSIC, Avenida del Conocimiento, SN, Armilla, Granada 18100, Spain;Centro Nacional de Medicina Tropical, Instituto de Salud Carlos III, Sinesio Delgado, 4, pabellón 13, Madrid 28029, Spain;Centro de Malária e outras Doenças Tropicais, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira 96, Lisbon 1349-008, Portugal;Centro de Referencia para el Control de Endemias, Instituto de Salud Carlos III, Malabo, Equatorial Guinea;London School of Hygiene and Tropical Medicine, Keppel St, London WC1E 7HT, UK | |
关键词: Bioko; Phylogeny; Trypanosomiasis; Tsetse; Equatorial Guinea; Luba; Glossina palpalis palpalis; | |
Others : 822991 DOI : 10.1186/1756-3305-7-31 |
|
received in 2013-11-18, accepted in 2014-01-14, 发布年份 2014 |
【 摘 要 】
Background
Luba is one of the four historical foci of Human African Trypanosomiasis (HAT) on Bioko Island, in Equatorial Guinea. Although no human cases have been detected since 1995, T. b. gambiense was recently observed in the vector Glossina palpalis palpalis. The existence of cryptic species within this vector taxon has been previously suggested, although no data are available regarding the evolutionary history of tsetse flies populations in Bioko.
Methods
A phylogenetic analysis of 60 G. p. palpalis from Luba was performed sequencing three mitochondrial (COI, ND2 and 16S) and one nuclear (rDNA-ITS1) DNA markers. Phylogeny reconstruction was performed by Distance Based, Maximum Likelihood and Bayesian Inference methods.
Results
The COI and ND2 mitochondrial genes were concatenated and revealed 10 closely related haplotypes with a dominant one found in 61.1% of the flies. The sequence homology of the other 9 haplotypes compared to the former ranged from 99.6 to 99.9%. Phylogenetic analysis clearly clustered all island samples with flies coming from the Western African Clade (WAC), and separated from the flies belonging to the Central Africa Clade (CAC), including samples from Mbini and Kogo, two foci of mainland Equatorial Guinea. Consistent with mitochondrial data, analysis of the microsatellite motif present in the ITS1 sequence exhibited two closely related genotypes, clearly divergent from the genotypes previously identified in Mbini and Kogo.
Conclusions
We report herein that tsetse flies populations circulating in Equatorial Guinea are composed of two allopatric subspecies, one insular and the other continental. The presence of these two G. p. palpalis cryptic taxa in Equatorial Guinea should be taken into account to accurately manage vector control strategy, in a country where trypanosomiasis transmission is controlled but not definitively eliminated yet.
【 授权许可】
2014 Cordon-Obras et al.; licensee BioMed Central Ltd.
Files | Size | Format | View |
---|---|---|---|
Figure 4. | 56KB | Image | download |
Figure 3. | 83KB | Image | download |
Figure 2. | 78KB | Image | download |
Figure 1. | 103KB | Image | download |
Figure 4. | 56KB | Image | download |
Figure 3. | 83KB | Image | download |
Figure 2. | 78KB | Image | download |
Figure 1. | 103KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 1.
Figure 2.
Figure 3.
Figure 4.
【 参考文献 】
- [1]Simarro P, Franco J, Diarra A, Ruiz Postigo JA, Jannin J: Diversity of human African trypanosomiasis epidemiological settings requires fine-tuning control strategies to facilitate disease elimination. Res Rep Trop Med 2013, (4):1-6.
- [2]Kuzoe FA, Schofield CJ: Strategic review of traps and targets for tsetse and African Trypanosomiasis control. Geneva, Switzerland: World Health Organisation; 2004. [Report of Special Programme for Research and Training in Tropical Disease (TDR) TDR/IDE/TRY/051]
- [3]Kgori PM, Modo S, Torr SJ: The use of aerial spraying to eliminate tsetse from the Okavango Delta of Botswana. Acta Trop 2006, 99(2–3):184-199.
- [4]Solano P, Torr SJ, Lehane MJ: Is vector control needed to eliminate gambiense human African trypanosomiasis? Front Cell Infect Microbiol 2013, 3:33.
- [5]Vreysen MJ, Saleh KM, Ali MY, Abdulla AM, Zhu ZR, Juma KG, Dyck VA, Msangi AR, Mkonyi PA, Feldmann HU: Glossina austeni (Diptera: Glossinidae) eradicated on the island of Unguja, Zanzibar, using the sterile insect technique. J Econ Entomol 2000, 93(1):123-135.
- [6]Challier A, Gouteaux J, Coosemans M: La limite géographique entre les sous-espèces Glossina palpalis palpalis (Rob.-Desv.) et Glossina palpalis gambiensis Vanderplanck en Afrique occidentale. Cahiers - ORSTOM Entomologie Médicale et Parasitologie 1983, 21:207-220.
- [7]Gooding RH, Solano P, Ravel S: X-chromosome mapping experiments suggest occurrence of cryptic species in the tsetse fly Glossina palpalis palpalis. Can J Zool 2004, 82:1902-1909.
- [8]Hebert PD, Ratnasingham S, de Waard JR: Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc Biol Sci 2003, 270(Suppl 1):S96-S99.
- [9]Hebert PD, Cywinska A, Ball SL, de Waard JR: Biological identifications through DNA barcodes. Proc Biol Sci 2003, 270(1512):313-321.
- [10]Dyer NA, Furtado A, Cano J, Ferreira F, Odete Afonso M, Ndong-Mabale N, Ndong-Asumu P, Centeno-Lima S, Benito A, Weetman D, et al.: Evidence for a discrete evolutionary lineage within Equatorial Guinea suggests that the tsetse fly Glossina palpalis palpalis exists as a species complex. Mol Ecol 2009, 18(15):3268-3282.
- [11]Dyer NA, Lawton SP, Ravel S, Choi KS, Lehane MJ, Robinson AS, Okedi LM, Hall MJ, Solano P, Donnelly MJ: Molecular phylogenetics of tsetse flies (Diptera: Glossinidae) based on mitochondrial (COI, 16S, ND2) and nuclear ribosomal DNA sequences, with an emphasis on the palpalis group. Mol Phylogenet Evol 2008, 49(1):227-239.
- [12]Gooding RH: Genetic analysis of hybrid sterility in crosses of the tsetse flies Glossina palpalis palpalis and Glossina palpalis gambiensis (Diptera: Glossinidae). Can J Zool 1997, 75:1109-1117.
- [13]Simarro PP: [Current strategies in the campaign against human trypanosomiasis in the Equatorial Republic of Guinea]. Rev Sanid Hig Publica (Madr) 1988, 62(5–8):1483-1493.
- [14]Simarro PP, Franco JR, Ndongo P, Nguema E, Louis FJ, Jannin J: The elimination of Trypanosoma brucei gambiense sleeping sickness in the focus of Luba, Bioko Island, Equatorial Guinea. Trop Med Int Health 2006, 11(5):636-646.
- [15]Cordon-Obras C, Garcia-Estebanez C, Ndong-Mabale N, Abaga S, Ndongo-Asumu P, Benito A, Cano J: Screening of Trypanosoma brucei gambiense in domestic livestock and tsetse flies from an insular endemic focus (Luba, Equatorial Guinea). PLoS Negl Trop Dis 2010, 4(6):e704.
- [16]Jamonneau V, Ilboudo H, Kabore J, Kaba D, Koffi M, Solano P, Garcia A, Courtin D, Laveissiere C, Lingue K, et al.: Untreated human infections by Trypanosoma brucei gambiense are not 100% fatal. PLoS Negl Trop Dis 2012, 6(6):e1691.
- [17]Louis FJ, Kohagne Tongue L, Ebo OEV, Simarro PP: [Organizing an active screening campaign for human African trypanosomiasis due to Trypanosoma brucei gambiense]. Med Trop (Mars) 2008, 68(1):11-16.
- [18]Szymura JM, Lunt DH, Hewitt GM: The sequence and structure of the meadow grasshopper (Chorthippus parallelus) mitochondrial srRNA, ND2, COI, COII ATPase8 and 9 tRNA genes. Insect Mol Biol 1996, 5(2):127-139.
- [19]Lunt DH, Zhang DX, Szymura JM, Hewitt GM: The insect cytochrome oxidase I gene: evolutionary patterns and conserved primers for phylogenetic studies. Insect Mol Biol 1996, 5(3):153-165.
- [20]Zhang DX, Szymura JM, Hewitt GM: Evolution and structural conservation of the control region of insect mitochondrial DNA. J Mol Evol 1995, 40(4):382-391.
- [21]Caterino MS, Cho S, Sperling FA: The current state of insect molecular systematics: a thriving Tower of Babel. Annu Rev Entomol 2000, 45:1-54.
- [22]Harrison RG: Animal mitochondrial DNA as a genetic marker in population and evolutionary biology. Trends Ecol Evol 1989, 4(1):6-11.
- [23]Vogler AP, DeSalle R: Evolution and phylogenetic information content of the ITS-1 region in the tiger beetle Cicindela dorsalis. Mol Biol Evol 1994, 11(3):393-405.
- [24]Pereira JO, Freitas BM, Jorge DM, Torres DC, Soares CE, Grangeiro TB: Genetic variability in Melipona quinquefasciata (Hymenoptera, Apidae, Meliponini) from northeastern Brazil determined using the first internal transcribed spacer (ITS1). Genet Mol Res 2009, 8(2):641-648.
- [25]Bower JE, Dowton M, Cooper RD, Beebe NW: Intraspecific concerted evolution of the rDNA ITS1 in Anopheles farauti sensu stricto (Diptera: Culicidae) reveals recent patterns of population structure. J Mol Evol 2008, 67(4):397-411.
- [26]Gouteux JP, Lancien J: [The pyramidal trap for collecting and controlling tsetse flies (Diptera: Glossinidae). Comparative trials and description of new collecting technics]. Trop Med Parasitol 1986, 37(1):61-66.
- [27]Simarro PP, Mas J, Lancien J, Ona Sima F, Mateo MJ, Roche J: [Epidemiology of human trypanosomiasis in the Luba focus, in Equatorial Guinea]. Rev Sanid Hig Publica (Madr) 1990, 64(9–10):517-534.
- [28]Cano J, Descalzo MA, Ndong-Mabale N, Ndong-Asumu P, Bobuakasi L, Nzambo-Ondo S, Benito A, Roche J: Predicted distribution and movement of Glossina palpalis palpalis (Diptera: Glossinidae) in the wet and dry seasons in the Kogo trypanosomiasis focus (Equatorial Guinea). J Vector Ecol 2007, 32(2):218-225.
- [29]Cano J, Descalzo MA, Ndong-Mabale N, Ndongo-Asumu P, Bobuakasi L, Buatiche JN, Nzambo-Ondo S, Ondo-Esono M, Benito A, Roche J: Spatial and temporal variability of the Glossina palpalis palpalis population in the Mbini focus (Equatorial Guinea). Int J Health Geogr 2007, 6:36. BioMed Central Full Text
- [30]Brunhes J, Cuisance D, Geoffroy B, Hervy JP, Lebbe J: Les glossines ou mouches tsé-tsé. Logiciel d’identification. Glossina Expert. Manuel illustré d’utilisation. VI, ORSTOM, Paris: Université Paris; 1998.
- [31]Simon C, Frati F, Bechenbach A, Crespi B, Liu H, Flook P: Evolution, weighting and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann Entomol Soc Am 1994, 87:651-701.
- [32]Hall TA: BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999, 41:95-98.
- [33]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011, 28(10):2731-2739.
- [34]Schwarz GE: Estimating the dimension of a model. Ann Stat 1978, 2(6):461-464.
- [35]Akaike H: A new look at statistical model identification. IEEE Trans Automat Control 1974, 6(19):716-723.
- [36]Tamura K: Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G + C-content biases. Mol Biol Evol 1992, 9(4):678-687.
- [37]Tamura K, Nei M: Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993, 10(3):512-526.
- [38]Hasegawa M, Kishino H, Yano T: Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 1985, 22(2):160-174.
- [39]Felsenstein J: Confidence-limits on phylogenies- an approach using the bootstrap. Evolution 1985, 39:783-791.
- [40]Saitou N, Nei M: The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987, 4(4):406-425.
- [41]Drummond AJ, Rambaut A: BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 2007, 7:214. BioMed Central Full Text
- [42]Hastings WK: Monte Carlo sampling methods using Markov chains and their applications. Biometrika 1970, 57(1):97-109.
- [43]Yule GU: A mathematical theory of evolution, based on the conclusions of Dr. JC Willis, FRS. Philos Trans R Soc Lond B Biol Sci 1925, 213:21-87.
- [44]Gernhard T: The conditioned reconstructed process. J Theor Biol 2008, 253(4):769-778.
- [45]Heltshe JF, Forrester NE: Estimating species richness using the jackknife procedure. Biometrics 1983, 39(1):1-11.
- [46]Smith EP, van Belle G: Nonparametric estimation of species richness. Biometrics 1984, 40:119-129.
- [47]Bandelt HJ, Forster P, Rohl A: Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 1999, 16(1):37-48.
- [48]Tamura K, Nei M, Kumar S: Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci U S A 2004, 101(30):11030-11035.
- [49]Alvar J, Mas-Coma S, Carrasco M: Modern history and physical geography of Equatorial Guinea. Rev Sanid Hig Publica (Madr) 1996, 2–3:77-83.
- [50]Worobey M, Telfer P, Souquiere S, Hunter M, Coleman CA, Metzger MJ, Reed P, Makuwa M, Hearn G, Honarvar S, et al.: Island biogeography reveals the deep history of SIV. Science 2010, 329(5998):1487.
- [51]Deitz KC, Athrey G, Reddy MR, Overgaard HJ, Matias A, Jawara M, Della Torre A, Petrarca V, Pinto J, Kiszewski AE, et al.: Genetic isolation within the malaria mosquito Anopheles melas. Mol Ecol 2012, 21(18):4498-4513.
- [52]Post RJ, Flook PK, Millest AL, Cheke RA, McCall PJ, Wilson MD, Mustapha M, Somiari S, Davies JB, Mank RA, et al.: Cytotaxonomy, morphology and molecular systematics of the Bioko form of Simulium yahense (Diptera: Simuliidae). Bull Entomol Res 2003, 93(2):145-157.
- [53]Solano P, Ravel S, Bouyer J, Camara M, Kagbadouno MS, Dyer N, Gardes L, Herault D, Donnelly MJ, De Meeus T: The population structure of Glossina palpalis gambiensis from island and continental locations in Coastal Guinea. PLoS Negl Trop Dis 2009, 3(3):e392.
- [54]Camara M, Caro-Riano H, Ravel S, Dujardin JP, Hervouet JP, De Meeus T, Kagbadouno MS, Bouyer J, Solano P: Genetic and morphometric evidence for population isolation of Glossina palpalis gambiensis (Diptera: Glossinidae) on the Loos islands, Guinea. J Med Entomol 2006, 43(5):853-860.
- [55]Moreno M, Salgueiro P, Vicente JL, Cano J, Berzosa PJ, de Lucio A, Simard F, Caccone A, Do Rosario VE, Pinto J, et al.: Genetic population structure of Anopheles gambiae in Equatorial Guinea. Malar J 2007, 6:137. BioMed Central Full Text
- [56]Liao D: Concerted evolution: molecular mechanism and biological implications. Am J Hum Genet 1999, 64(1):24-30.
- [57]Marshall JC, Pinto J, Charlwood JD, Gentile G, Santolamazza F, Simard F, del la Torre A, Donnelly MJ, Caccone A: Exploring the origin and degree of genetic isolation of Anopheles gambiae from the islands of Sao Tome and Prıncipe, potential sites for testing transgenic-based vector control. Evol Appl 2008, 4(1):631-644.
- [58]Liao D, Pavelitz T, Kidd JR, Kidd KK, Weiner AM: Concerted evolution of the tandemly repeated genes encoding human U2 snRNA (the RNU2 locus) involves rapid intrachromosomal homogenization and rare interchromosomal gene conversion. EMBO J 1997, 16(3):588-598.
- [59]Liao D, Weiner AM: Concerted evolution of the tandemly repeated genes encoding primate U2 small nuclear RNA (the RNU2 locus) does not prevent rapid diversification of the (CT)n.(GA)n microsatellite embedded within the U2 repeat unit. Genomics 1995, 30(3):583-593.
- [60]Williams B, Dransfield R, Brightwell R: The control of tsetse flies in relation to fly movement and trapping efficiency. J Appl Biol 1992, 29:163-179.
- [61]Bursell E, Taylor P: An energy budget for Glossina (Diptera: Glossinidae). Bull Entomol Res 1980, 78:281-291.
- [62]Bursell E: Quantitative aspects of proline utilization during flight in tsetse flies. Physiol Entomol 1978, 3:265-272.
- [63]Brady J: The circadian organization of behaviour: time keeping in the tsetse fly, a model system. Adv Stud Behav 1988, 18:153-159.
- [64]Mateu E, Comas D, Calafell F, Perez-Lezaun A, Abade A, Bertranpetit J: A tale of two islands: population history and mitochondrial DNA sequence variation of Bioko and Sao Tome, Gulf of Guinea. Ann Hum Genet 1997, 61(Pt 6):507-518.
- [65]Vale GA, Bursell E, Hargrove JW: Catching-out the tsetse fly. Parasitol Today 1985, 1(4):106-110.
- [66]Hargrove JW: Optimized simulation of the control of tsetse flies Glossina pallidipes and G. m. morsitans (Diptera: Glossinidae) using odour-baited targets in Zimbabwe. Bull Entomol Res 2003, 93(1):19-29.
- [67]Gooding RH, Krafsur ES: Tsetse genetics: contributions to biology, systematics, and control of tsetse flies. Annu Rev Entomol 2005, 50:101-123.
- [68]Krafsur ES: Tsetse fly population genetics: an indirect approach to dispersal. Trends Parasitol 2003, 19(4):162-166.
- [69]Simo G, Njiokou F, Mbida Mbida JA, Njitchouang GR, Herder S, Asonganyi T, Cuny G: Tsetse fly host preference from sleeping sickness foci in Cameroon: epidemiological implications. Infect Genet Evol 2008, 8(1):34-39.
- [70]Clausen PH, Adeyemi I, Bauer B, Breloeer M, Salchow F, Staak C: Host preferences of tsetse (Diptera: Glossinidae) based on bloodmeal identifications. Med Vet Entomol 1998, 12(2):169-180.
- [71]Melachio TT, Simo G, Ravel S, De Meeus T, Causse S, Solano P, Lutumba P, Asonganyi T, Njiokou F: Population genetics of Glossina palpalis palpalis from central African sleeping sickness foci. Parasit Vectors 2011, 4:140. BioMed Central Full Text
- [72]Spath J: Feeding patterns of three sympatric tsetse species (Glossina spp.) (Diptera: Glossinidae) in the preforest zone of Cote d’Ivoire. Acta Trop 2000, 75(1):109-118.