期刊论文详细信息
Radiation Oncology
Multi-institutional comparison of treatment planning using stereotactic ablative body radiotherapy for hepatocellular carcinoma – benchmark for a prospective multi-institutional study
Yoshinori Ito6  Naoko Sanuki1  Sadanori Yamazaki2  Yasuo Matsumoto2  Mitsuhiro Nakamura3  Yukinori Matsuo3  Takeo Nakashima4  Shuichi Ozawa4  Tomoki Kimura4  Satoshi Ishikura5  Yohei Oku1  Atsuya Takeda1  Takahisa Eriguchi1 
[1] Radiation Oncology Center, Ofuna Chuo Hospital, Kanagawa, Japan;Department of Radiation Oncology, Niigata Cancer Center Hospital, Niigata, Japan;Department of Radiation Oncology and Image-applied Therapy, Kyoto University, Kyoto, Japan;Department of Radiology, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan;Department of Radiation Oncology, Juntendo University, Tokyo, Japan;Department of Radiation Oncology, National Cancer Center Hospital, Tokyo, Japan
关键词: Hepatocellular carcinoma;    Clinical study;    Benchmark;    SABR;    SBRT;    Stereotactic ablative body radiotherapy;    Stereotactic body radiotherapy;   
Others  :  1153996
DOI  :  10.1186/1748-717X-8-113
 received in 2013-03-08, accepted in 2013-04-30,  发布年份 2013
PDF
【 摘 要 】

Introduction

Several single institution phase I and phase II trials of stereotactic ablative body radiotherapy (SABR) for liver tumors have reported promising results and high local control rates of over 90%. However, there are wide variations in dose and fractionation due to different prescription policies and treatment methods across SABR series that have been published to date.

This study aims to assess and minimize inter-institutional variations in treatment planning using SABR for hepatocellular carcinoma (HCC) in preparation for a prospective multi-institutional study.

Methods

Four institutions (A-D) participated in this study. Each institution was provided with data from four cases, including planning and diagnostic CT images and clinical information, and asked to implement three plans (a practice plan and protocol plans 1 and 2). Practice plans were established based on the current treatment protocols at each institution. In protocol plan 1, each institution was instructed to prescribe 40 Gy in five fractions within 95% of the planning target volume (PTV). After protocol plan 1 was evaluated, we made protocol plan 2, The additional regulation to protocol plan 1 was that 40 Gy in five fractions was prescribed to a 70% isodose line of the global maximum dose within the PTV. Planning methods and dose volume histograms (DVHs) including the median PTV D50 (Dm50) and the median normal liver volume that received 20 Gy or higher (Vm20) were compared.

Results

In the practice plan, Dm50 was 48.4 Gy (range, 43.6-51.2 Gy). Vm20 was 15.9% (range, 12.2-18.9%). In protocol plan 1, the Dm50 at institution A was higher (51.2 Gy) than the other institutions (42.0-42.2 Gy) due to differences in dose specifications. In protocol plan 2, variations in DVHs were reduced. The Dm50 was 51.9 Gy (range, 51.0-53.1 Gy), and the Vm20 was 12.3% (range, 10.4-13.2%). The homogeneity index was nearly equivalent at all institutions.

Conclusions

There were notable inter-institutional differences in practice planning using SABR to treat HCC. The range of PTV and normal liver DVH values was reduced when the dose was prescribed to an isodose line within the PTV. In multi-institutional studies, detailed dose specifications based on collaboration are necessary.

【 授权许可】

   
2013 Eriguchi et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150407101904893.pdf 2683KB PDF download
Figure 4. 128KB Image download
Figure 3. 82KB Image download
Figure 2. 74KB Image download
Figure 1. 88KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Bruix J, Sherman M: Management of hepatocellular carcinoma: an update. Hepatology (Baltimore, Md) 2011, 53:1020-1022.
  • [2]European Association for the Study of the Liver, European Organisation for Research and Treatment of Cancer: EASL-EORTC clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol 2012, 56:908-943.
  • [3]Mendez Romero A, Wunderink W, Hussain SM, De Pooter JA, Heijmen BJ, Nowak PC, Nuyttens JJ, Brandwijk RP, Verhoef C, Ijzermans JN, Levendag PC: Stereotactic body radiation therapy for primary and metastatic liver tumors: A single institution phase i-ii study. Acta oncologica (Stockholm, Sweden) 2006, 45:831-837.
  • [4]Tse RV, Hawkins M, Lockwood G, Kim JJ, Cummings B, Knox J, Sherman M, Dawson LA: Phase I study of individualized stereotactic body radiotherapy for hepatocellular carcinoma and intrahepatic cholangiocarcinoma. J Clin Oncol J Am Soc Clin Oncol 2008, 26:657-664.
  • [5]Lee MT, Kim JJ, Dinniwell R, Brierley J, Lockwood G, Wong R, Cummings B, Ringash J, Tse RV, Knox JJ, Dawson LA: Phase I study of individualized stereotactic body radiotherapy of liver metastases. J Clin Oncol J Am Soc Clin Oncol 2009, 27:1585-1591.
  • [6]Cardenes HR, Price TR, Perkins SM, Maluccio M, Kwo P, Breen TE, Henderson MA, Schefter TE, Tudor K, Deluca J, Johnstone PA: Phase I feasibility trial of stereotactic body radiation therapy for primary hepatocellular carcinoma. Clin Trans Oncol Pub Feder Spanish Oncol Soc Nat Cancer Ins Mexico 2010, 12:218-225.
  • [7]Louis C, Dewas S, Mirabel X, Lacornerie T, Adenis A, Bonodeau F, Lartigau E: Stereotactic radiotherapy of hepatocellular carcinoma: preliminary results. Technol Cancer Res Treat 2010, 9:479-487.
  • [8]Kwon JH, Bae SH, Kim JY, Choi BO, Jang HS, Jang JW, Choi JY, Yoon SK, Chung KW: Long-term effect of stereotactic body radiation therapy for primary hepatocellular carcinoma ineligible for local ablation therapy or surgical resection. Stereotactic radiotherapy for liver cancer. BMC Cancer 2010, 10:475. BioMed Central Full Text
  • [9]Andolino DL, Johnson CS, Maluccio M, Kwo P, Tector AJ, Zook J, Johnstone PA, Cardenes HR: Stereotactic body radiotherapy for primary hepatocellular carcinoma. Int J Radiation Oncol, Biol, Physics 2011, 81:e447-e453.
  • [10]van’t Riet A, Mak AC, Moerland MA, Elders LH, van der Zee W: A conformation number to quantify the degree of conformality in brachytherapy and external beam irradiation: application to the prostate. Int J Rad Oncol, Biol, Physics 1997, 37:731-736.
  • [11]Fairchild A, Bar-Deroma R, Collette L, Haustermans K, Hurkmans C, Lacombe D, Maingon P, Poortmans P, Tomsej M, Weber DC, Gregoire V: Development of clinical trial protocols involving advanced radiation therapy techniques: the European Organisation for Research and Treatment of Cancer Radiation Oncology Group approach. European J Cancer (Oxford, England : 1990) 2012, 48:1048-1054.
  • [12]Matsuo Y, Takayama K, Nagata Y, Kunieda E, Tateoka K, Ishizuka N, Mizowaki T, Norihisa Y, Sakamoto M, Narita Y: Interinstitutional variations in planning for stereotactic body radiation therapy for lung cancer. Int J Rad Oncol, Biol, Physics 2007, 68:416-425.
  • [13]Bowden P, Fisher R, Mac Manus M, Wirth A, Duchesne G, Millward M, McKenzie A, Andrews J, Ball D: Measurement of lung tumor volumes using three-dimensional computer planning software. Int J Rad Oncol, Biol, Physics 2002, 53:566-573.
  • [14]Senan S, Van Sornsen De Koste J, Samson M, Tankink H, Jansen P, Nowak PJ, Krol AD, Schmitz P, Lagerwaard FJ: Evaluation of a target contouring protocol for 3D conformal radiotherapy in non-small cell lung cancer. Radiotherapy Oncol J European Soc Therapeutic Radiol Oncol 1999, 53:247-255.
  • [15]Nagata Y, Matsuo Y, Takayama K, Norihisa Y, Mizowaki T, Mitsumori M, Shibuya K, Yano S, Narita Y, Hiraoka M: Current status of stereotactic body radiotherapy for lung cancer. Int J Clin Oncol/Japan Soc Clin Oncol 2007, 12:3-7.
  • [16]Hurkmans CW, Cuijpers JP, Lagerwaard FJ, Widder J, van der Heide UA, Schuring D, Senan S: Recommendations for implementing stereotactic radiotherapy in peripheral stage IA non-small cell lung cancer: report from the Quality Assurance Working Party of the randomised phase III ROSEL study. Radiation Oncol (London, England) 2009, 4:1. BioMed Central Full Text
  • [17]ICRU: Report 50: Prescribing, recording and reporting photon beam therapy. United Kingdom: Oxford University Press; 1993. [Journal of ICRU]
  • [18]Benedict SH, Yenice KM, Followill D, Galvin JM, Hinson W, Kavanagh B, Keall P, Lovelock M, Meeks S, Papiez L: Stereotactic body radiation therapy: the report of AAPM Task Group 101. Med Phys 2010, 37:4078-4101.
  • [19]Oku Y, Takeda A, Kunieda E, Sudo Y, Oooka Y, Aoki Y, Shimouchi Y, Nishina R, Nomura K, Sugiura M, Ohashi T: Analysis of suitable prescribed isodose line fitting to planning target volume in stereotactic body radiotherapy using dynamic conformal multiple arc therapy. Practical Radiation Oncol 2012, 2:46-53.
  • [20]Widder J, Hollander M, Ubbels JF, Bolt RA, Langendijk JA: Optimizing dose prescription in stereotactic body radiotherapy for lung tumours using Monte Carlo dose calculation. Radiotherapy Oncol J European Soc Therapeutic Radiol Oncol 2010, 94:42-46.
  • [21]Weber DC, Tomsej M, Melidis C, Hurkmans CW: QA makes a clinical trial stronger: evidence-based medicine in radiation therapy. Radiotherapy Oncol J European Soc Therapeutic Radiol Oncol 2012, 105:4-8.
  • [22]Ohri N, Shen X, Dicker AP, Doyle LA, Harrison AS, Showalter TN: Radiotherapy protocol deviations and clinical outcomes: a meta-analysis of Cooperative Group Clinical Trials. J Nat Cancer Ins 2013, 105:387-393.
  • [23]Bekelman JE, Deye JA, Vikram B, Bentzen SM, Bruner D, Curran WJ Jr, Dignam J, Efstathiou JA, FitzGerald TJ, Hurkmans C: Redesigning radiotherapy quality assurance: opportunities to develop an efficient, evidence-based system to support clinical trials–report of the National Cancer Institute Work Group on Radiotherapy Quality Assurance. Int J Radiation Oncol, Biol, Physics 2012, 83:782-790.
  文献评价指标  
  下载次数:37次 浏览次数:17次