期刊论文详细信息
Molecular Neurodegeneration
LRRK2 knockout mice have an intact dopaminergic system but display alterations in exploratory and motor co-ordination behaviors
Heather L Melrose4  Matthew J Farrer2  Christopher J Janus3  Dennis W Dickson4  Wen-Lang Lin4  Kenya Nishioka4  Caroline B Kent4  Iryna Prots1  Beate Winner1  Brittany Dugger4  Joel E Beevers4  Erin E Bowles4  Sarah J Lincoln4  Justus C Dächsel4  Bahareh Behrouz4  Mei Yue4  Kelly M Hinkle4 
[1] Junior Group III, Interdisciplinary Center for Clinical Research, Nikolaus-Fiebiger Center for Molecular Medicine, FAU, Erlangen-Nürnberg, Germany;Department of Medical Genetics, University of British Columbia, Vancouver V6T 285, Canada;Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, Florida 32610, USA;Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224, USA
关键词: Autophagy;    Kidney;    Motor co-ordination;    Open-field;    Neuropathology;    Microdialysis;    Dopamine;    Knockout;    Parkinson’s disease;   
Others  :  863815
DOI  :  10.1186/1750-1326-7-25
 received in 2012-02-06, accepted in 2012-04-27,  发布年份 2012
【 摘 要 】

Mutations in the LRRK2 gene are the most common cause of genetic Parkinson’s disease. Although the mechanisms behind the pathogenic effects of LRRK2 mutations are still not clear, data emerging from in vitro and in vivo models suggests roles in regulating neuronal polarity, neurotransmission, membrane and cytoskeletal dynamics and protein degradation.

We created mice lacking exon 41 that encodes the activation hinge of the kinase domain of LRRK2. We have performed a comprehensive analysis of these mice up to 20 months of age, including evaluation of dopamine storage, release, uptake and synthesis, behavioral testing, dendritic spine and proliferation/neurogenesis analysis.

Our results show that the dopaminergic system was not functionally comprised in LRRK2 knockout mice. However, LRRK2 knockout mice displayed abnormal exploratory activity in the open-field test. Moreover, LRRK2 knockout mice stayed longer than their wild type littermates on the accelerated rod during rotarod testing. Finally, we confirm that loss of LRRK2 caused degeneration in the kidney, accompanied by a progressive enhancement of autophagic activity and accumulation of autofluorescent material, but without evidence of biphasic changes.

【 授权许可】

   
2012 Hinkle et al.; licensee BioMed Central Ltd.

附件列表
Files Size Format View
Figure 1. 44KB Image download
56KB Image download
137KB Image download
41KB Image download
63KB Image download
70KB Image download
67KB Image download
47KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]Zimprich A, et al.: Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 2004, 44:601-607.
  • [2]Paisan-Ruiz C, Evans EW, Jain S, Xiromerisiou G, Gibbs JR, Eerola J, Gourbali V, Hellstrom O, Duckworth J, Papadimitriou A, Tienari PJ, Hadjigeorgiou GM, Singleton AB: Testing association between LRRK2 and Parkinson's disease and investigating linkage disequilibrium. J Med Genet 2006, 43:e9.
  • [3]Kachergus J, Mata IF, Hulihan M, Taylor JP, Lincoln S, Aasly J, Gibson JM, Ross OA, Lynch T, Wiley J, Payami H, Nutt J, Maraganore DM, Czyzewski K, Styczynska M, Wszolek ZK, Farrer MJ, Toft M: Identification of a novel LRRK2 mutation linked to autosomal dominant parkinsonism: evidence of a common founder across European populations. Am J Hum Genet 2005, 76:672-680.
  • [4]Ozelius LJ, Senthil G, Saunders-Pullman R, Ohmann E, Deligtisch A, Tagliati M, Hunt AL, Klein C, Henick B, Hailpern SM, Lipton RB, Soto-Valencia J, Risch N, Bressman SB: LRRK2 G2019S as a cause of Parkinson's disease in Ashkenazi Jews. N Engl J Med 2006, 354:424-425.
  • [5]Ishihara L, et al.: Screening for Lrrk2 G2019S and clinical comparison of Tunisian and North American Caucasian Parkinson's disease families. Mov Disord 2007, 22:55-61.
  • [6]Di Fonzo A, Wu-Chou YH, Lu CS, van Doeselaar M, Simons EJ, Rohe CF, Chang HC, Chen RS, Weng YH, Vanacore N, Breedveld GJ, Oostra BA, Bonifati V: A common missense variant in the LRRK2 gene, Gly2385Arg, associated with Parkinson's disease risk in Taiwan. Neurogenetics 2006, 7:133-138.
  • [7]Tan EK: Identification of a common genetic risk variant (LRRK2 Gly2385Arg) in Parkinson's disease. Ann Acad Med Singapore 2006, 35:840-842.
  • [8]Farrer MJ, Stone JT, Lin CH, Dachsel JC, Hulihan MM, Haugarvoll K, Ross OA, Wu RM: Lrrk2 G2385R is an ancestral risk factor for Parkinson's disease in Asia. Parkinsonism & related disorders 2007, 13:89-92.
  • [9]Ross OA, Wu YR, Lee MC, Funayama M, Chen ML, Soto AI, Mata IF, Lee-Chen GJ, Chen CM, Tang M, Zhao Y, Hattori N, Farrer MJ, Tan EK, Wu RM: Analysis of Lrrk2 R1628P as a risk factor for Parkinson's disease. Ann Neurol 2008, 64:88-92.
  • [10]Daniels V, Baekelandt V, Taymans JM: On the road to leucine-rich repeat kinase 2 signalling: evidence from cellular and in vivo studies. Neurosignals 2011, 19:1-15.
  • [11]Yue Z, Lachenmayer ML: Genetic LRRK2 models of Parkinson's disease: Dissecting the pathogenic pathway and exploring clinical applications. Mov Disord 2011, 26:1386-1397.
  • [12]Nandhagopal R, Mak E, Schulzer M, McKenzie J, McCormick S, Sossi V, Ruth TJ, Strongosky A, Farrer MJ, Wszolek ZK, Stoessl AJ: Progression of dopaminergic dysfunction in a LRRK2 kindred: a multitracer PET study. Neurology 2008, 71:1790-1795.
  • [13]Sossi V, de la Fuente-Fernandez R, Nandhagopal R, Schulzer M, McKenzie J, Ruth TJ, Aasly JO, Farrer MJ, Wszolek ZK, Stoessl JA: Dopamine turnover increases in asymptomatic LRRK2 mutations carriers. Mov Disord 2010, 25:2717-2723.
  • [14]Bostantjopoulou S, Katsarou Z, Gerasimou G, Costa DC, Gotzamani-Psarrakou A: (123)I-FP-CIT SPET striatal uptake in parkinsonian patients with the alpha-synuclein (G209A) mutation A. Hell J Nucl Med 2008, 11:157-159.
  • [15]Perani D, Garibotto V, Hadjigeorgiou GM, Papadimitriou D, Fazio F, Papadimitriou A: Positron emission tomography changes in PARK1 mutation. Mov Disord 2006, 21:127-130.
  • [16]Samii A, Markopoulou K, Wszolek ZK, Sossi V, Dobko T, Mak E, Calne DB, Stoessl AJ: PET studies of parkinsonism associated with mutation in the alpha-synuclein gene. Neurology 1999, 53:2097-2102.
  • [17]Biskup S, Moore DJ, Rea A, Lorenz-Deperieux B, Coombes CE, Dawson VL, Dawson TM, West AB: Dynamic and redundant regulation of LRRK2 and LRRK1 expression. BMC Neurosci 2007, 8:102. BioMed Central Full Text
  • [18]Biskup S, Moore DJ, Celsi F, Higashi S, West AB, Andrabi SA, Kurkinen K, Yu SW, Savitt JM, Waldvogel HJ, Faull RL, Emson PC, Torp R, Ottersen OP, Dawson TM, Dawson VL: Localization of LRRK2 to membranous and vesicular structures in mammalian brain. Ann Neurol 2006, 60:557-569.
  • [19]Galter D, Westerlund M, Carmine A, Lindqvist E, Sydow O, Olson L: LRRK2 expression linked to dopamine-innervated areas. Ann Neurol 2006, 59:714-719.
  • [20]Melrose H, Lincoln S, Tyndall G, Dickson D, Farrer M: Anatomical localization of leucine-rich repeat kinase 2 in mouse brain. Neuroscience 2006, 139:791-794.
  • [21]Simon-Sanchez J, Herranz-Perez V, Olucha-Bordonau F, Perez-Tur J: LRRK2 is expressed in areas affected by Parkinson's disease in the adult mouse brain. Eur J Neurosci 2006, 23:659-666.
  • [22]Taymans JM, Van den Haute C, Baekelandt V: Distribution of PINK1 and LRRK2 in rat and mouse brain. J Neurochem 2006, 98:951-961.
  • [23]Melrose HL, Kent CB, Taylor JP, Dachsel JC, Hinkle KM, Lincoln SJ, Mok SS, Culvenor JG, Masters CL, Tyndall GM, Bass DI, Ahmed Z, Andorfer CA, Ross OA, Wszolek ZK, Delldonne A, Dickson DW, Farrer MJ: A comparative analysis of leucine-rich repeat kinase 2 (Lrrk2) expression in mouse brain and Lewy body disease. Neuroscience 2007, 147:1047-1058.
  • [24]Shi WX, Pun CL, Smith PL, Bunney BS: Endogenous DA-mediated feedback inhibition of DA neurons: involvement of both D(1)- and D(2)-like receptors. Synapse 2000, 35:111-119.
  • [25]Dachsel JC, Behrouz B, Yue M, Beevers JE, Melrose HL, Farrer MJ: A comparative study of Lrrk2 function in primary neuronal cultures. Parkinsonism Relat Disord 2010, 16:650-655.
  • [26]Winner B, Melrose HL, Zhao C, Hinkle KM, Yue M, Kent C, Braithwaite AT, Ogholikhan S, Aigner R, Winkler J, Farrer MJ, Gage FH: Adult neurogenesis and neurite outgrowth are impaired in LRRK2 G2019S mice. Neurobiol Dis 2011, 41:706-716.
  • [27]Parisiadou L, Xie C, Cho HJ, Lin X, Gu XL, Long CX, Lobbestael E, Baekelandt V, Taymans JM, Sun L, Cai H: Phosphorylation of ezrin/radixin/moesin proteins by LRRK2 promotes the rearrangement of actin cytoskeleton in neuronal morphogenesis. J Neurosci 2009, 29:13971-13980.
  • [28]Parisiadou L, Cai H: LRRK2 function on actin and microtubule dynamics in Parkinson disease. Commun Integr Biol 2010, 3:396-400.
  • [29]Chan D, Citro A, Cordy JM, Shen GC, Wolozin B: Rac1 protein rescues neurite retraction caused by G2019S leucine-rich repeat kinase 2 (LRRK2). J Biol Chem 2011, 286:16140-16149.
  • [30]Kicka S, Shen Z, Annesley SJ, Fisher PR, Lee S, Briggs S, Firtel RA: The LRRK2-related Roco kinase Roco2 is regulated by Rab1A and controls the actin cytoskeleton. Mol Biol Cell 2011, 22:2198-2211.
  • [31]Meixner A, Boldt K, Van Troys M, Askenazi M, Gloeckner CJ, Bauer M, Marto JA, Ampe C, Kinkl N, Ueffing M: A QUICK screen for Lrrk2 interaction partners–leucine-rich repeat kinase 2 is involved in actin cytoskeleton dynamics. Mol Cell Proteomics 2011, 10(M110):001172.
  • [32]Jedynak JP, Uslaner JM, Esteban JA, Robinson TE: Methamphetamine-induced structural plasticity in the dorsal striatum. Eur J Neurosci 2007, 25:847-853.
  • [33]Couillard-Despres S, Winner B, Schaubeck S, Aigner R, Vroemen M, Weidner N, Bogdahn U, Winkler J, Kuhn HG, Aigner L: Doublecortin expression levels in adult brain reflect neurogenesis. Eur J Neurosci 2005, 21:1-14.
  • [34]Tong Y, Yamaguchi H, Giaime E, Boyle S, Kopan R, Kelleher RJ, Shen J: Loss of leucine-rich repeat kinase 2 causes impairment of protein degradation pathways, accumulation of alpha-synuclein, and apoptotic cell death in aged mice. Proc Natl Acad Sci U S A 2010, 107:9879-9884.
  • [35]Hall C, Ballachey EL: A Study of the Rat's behavior in a field: A Contribution to Method in Comparative Psychology. Univ Calif Publ Psych 1932, 6:1-12.
  • [36]Corman CD, Shafer JN: Open-field activity and exploratory behavior. Psychonomic Science 1968, 13:55-56.
  • [37]Royce JR: On the construct validity of open-field measures. Psychological Bulletin 1977, 84:1098-1106.
  • [38]Lauterbach EC, Duvoisin RC: Anxiety disorders in familial parkinsonism. Am J Psychiatry 1991, 148:274.
  • [39]Nilsson FM, Kessing LV, Bolwig TG: Increased risk of developing Parkinson's disease for patients with major affective disorder: a register study. Acta Psychiatr Scand 2001, 104:380-386.
  • [40]Zhu XR, Maskri L, Herold C, Bader V, Stichel CC, Gunturkun O, Lubbert H: Non-motor behavioural impairments in parkin-deficient mice. Eur J Neurosci 2007, 26:1902-1911.
  • [41]Treit D, Fundytus M: Thigmotaxis as a test for anxiolytic activity in rats. Pharmacol Biochem Behav 1988, 31:959-962.
  • [42]Brown RE: Behavioural phenotyping of transgenic mice. Can J Exp Psychol 2007, 61:328-344.
  • [43]Herzig MC: LRRK2 protein levels are determined by kinase function and are crucial for kidney and lung homeostasis in mice. Hum Mol Genet 2011, 40:4209-4223.
  • [44]Tong Y, Giaime E, Yamaguchi H, Ichimura T, Liu Y, Si H, Cai H, Bonventre JV, Shen J: Loss of leucine-rich repeat kinase 2 causes age-dependent bi-phasic alterations of the autophagy pathway. Mol Neurodegener 2012, 7:2. BioMed Central Full Text
  • [45]Wahlsten D, Metten P, Phillips TJ, Boehm SL, Burkhart-Kasch S, Dorow J, Doerksen S, Downing C, Fogarty J, Rodd-Henricks K, Hen R, McKinnon CS, Merrill CM, Nolte C, Schalomon M, Schlumbohm JP, Sibert JR, Wenger CD, Dudek BC, Crabbe JC: Different data from different labs: lessons from studies of gene-environment interaction. J Neurobiol 2003, 54:283-311.
  • [46]Lipp HP, Wolfer DP: Genetically modified mice and cognition. Curr Opin Neurobiol 1998, 8:272-280.
  • [47]Melrose HL, et al.: Impaired dopaminergic neurotransmission and microtubule-associated protein tau alterations in human LRRK2 transgenic mice. Neurobiol Dis 2010, 40:503-517.
  • [48]Hyde LA, Crnic LS, Pollock A, Bickford PC: Motor learning in Ts65Dn mice, a model for Down syndrome. Dev Psychobiol 2001, 38:33-45.
  • [49]Gerlai R, Pisacane P, Erickson S: Heregulin, but not ErbB2 or ErbB3, heterozygous mutant mice exhibit hyperactivity in multiple behavioral tasks. Behav Brain Res 2000, 109:219-227.
  • [50]Vitali R, Clarke S: Improved rotorod performance and hyperactivity in mice deficient in a protein repair methyltransferase. Behav Brain Res 2004, 153:129-141.
  • [51]Clabough EB, Zeitlin SO: Deletion of the triplet repeat encoding polyglutamine within the mouse Huntington's disease gene results in subtle behavioral/motor phenotypes in vivo and elevated levels of ATP with cellular senescence in vitro. Hum Mol Genet 2006, 15:607-623.
  • [52]Sahay A, Drew MR, Hen R: Dentate gyrus neurogenesis and depression. Prog Brain Res 2007, 163:697-722.
  • [53]Sahay A, Hen R: Adult hippocampal neurogenesis in depression. Nat Neurosci 2007, 10:1110-1115.
  • [54]Kontgen F, Suss G, Stewart C, Steinmetz M, Bluethmann H: Targeted disruption of the MHC class II Aa gene in C57BL/6 mice. Int Immunol 1993, 5:957-964.
  • [55]Paxinos G, Franklin K: The Mouse Brain in Stereotaxic Coordinates. 2nd edition. San Diego: Academic; 2001.
  • [56]Wolfer DP, Madani R, Valenti P, Lipp HP: Extended analysis of path data from mutant mice using the public domain software Wintrack. Physiol Behav 2001, 73:745-753.
  • [57]Kale A, Amende I, Meyer GP, Crabbe JC, Hampton TG: Ethanol's effects on gait dynamics in mice investigated by ventral plane videography. Alcohol Clin Exp Res 2004, 28:1839-1848.
  • [58]Amende I, Kale A, McCue S, Glazier S, Morgan JP, Hampton TG: Gait dynamics in mouse models of Parkinson's disease and Huntington's disease. J Neuroeng Rehabil 2005, 2:20. BioMed Central Full Text
  • [59]Goldberg NR, Hampton T, McCue S, Kale A, Meshul CK: Profiling changes in gait dynamics resulting from progressive 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced nigrostriatal lesioning. J Neurosci Res 2011, 89:1698-1706.
  • [60]Hamers FP, Lankhorst AJ, van Laar TJ, Veldhuis WB, Gispen WH: Automated quantitative gait analysis during overground locomotion in the rat: its application to spinal cord contusion and transection injuries. J Neurotrauma 2001, 18:187-201.
  • [61]Morel P, Fauconneau B, Page G, Mirbeau T, Huguet F: Inhibitory effects of ascorbic acid on dopamine uptake by rat striatal synaptosomes: relationship to lipid peroxidation and oxidation of protein sulfhydryl groups. Neurosci Res 1998, 32:171-179.
  • [62]Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976, 72:248-254.
  • [63]Moron JA, Perez V, Fernandez-Alvarez E, Marco JL, Unzeta M: "In vitro" effect of some 5-hydroxy-indolalkylamine derivatives on monoamine uptake system. J Neural Transm Suppl 1998, 52:343-349.
  文献评价指标  
  下载次数:14次 浏览次数:10次