期刊论文详细信息
Virology Journal
The tree shrew provides a useful alternative model for the study of influenza H1N1 virus
Nan-shan Zhong1  Ji-qiang Li4  Chun-guang Yang1  Run-feng Li1  Sui-shan Zhao1  Rong Liu1  Yu-tao Wang1  Yu-tong Zhu3  Jin Zhao1  Zi-feng Yang2 
[1] The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease (Guangzhou Medical University, China), Clinical Virology Division, 1 Kangda Road, Guangzhou, 510230, China;Macau University of Science and Technology, Faculty of Chinese Medicine, Macau SAR, AvenidaWai Long, Taipa, Macau, 999078, China;Traditional Chinese Medicine of Guangzhou University, Centre for Artemisia apiacea, 12 Airport Road, Guangzhou, 510405, China;Guangdong Provincial Hospital of Traditional Chinese Medicine, Emergency Department, 111 Dade Road, Guangzhou, 510120, China
关键词: Receptors;    Pathological changes;    Replication;    Clinical signs;    Tree shew;    Influenza H1N1 virus;   
Others  :  1150927
DOI  :  10.1186/1743-422X-10-111
 received in 2012-07-10, accepted in 2013-04-02,  发布年份 2013
PDF
【 摘 要 】

Background

The influenza pandemics have resulted in significant morbidity and mortality worldwide. Animal models are useful in the study of influenza virus pathogenesis. Because of various limitations in current laboratory animal models, it is essential to develop new alternative animal models for influenza virus research aimed at understanding the viral and host factors that contribute to virus infection in human.

Method

We investigated the replicative efficiency of influenza H1N1 virus (classic strain (Influenza A/PR/8/34), seasonal influenza isolate (A/Guangzhou/GIRD/02/09) and swine-origin human influenza virus (A/Guangzhou/GIRD/07/09)) at Day1,2,4,6 and 9 p.i. using TCID50 and qPCR assay in tree shrew model. Body temperature was monitored in the morning and evening for 3 days before infection and for 14 days. Seroconversion was detected by determining the neutralizing antibody titers against the challenge viruses in the pre- and exposure serum samples collected before infection and at 14 days p.i., respectively. Lungs and tracheas of tree shews were collected at day 14 post p.i. for histopathological analysis. Lectinhistochemistry analysis was conducted to identify the distribution of SAα2,3 Gal and SAα2,6 Gal receptors in the lung and trachea.

Results

The infected tree shrew displayed mild or moderate systemic and respiratory symptoms and pathological changes in respiratory tracts. The human H1N1 influenza virus may replicate in the upper respiratory tract of tree shrews. Analysis of the receptors distribution in the respiratory tract of tree shrews by lectinhistochemistry showed that sialic acid (SA)α2,6-Gal receptors were widely distributed in the trachea and nasal mucosa, whereas (SA)α2,3-Gal receptor was the main receptor in the lung tissue.

Conclusions

Based on these findings, tree shrew seemed to mimic well influenza virus infection in humans. We propose that tree shrews could be a useful alternative mammalian model to study pathogenesis of influenza H1N1 virus.

【 授权许可】

   
2013 Yang et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150406004256360.pdf 1268KB PDF download
Figure 4. 174KB Image download
Figure 3. 52KB Image download
Figure 2. 293KB Image download
Figure 1. 61KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Douglas D, RichmanJ R, Whitley GF: Clinical virology. Washington: ASM Press; 2009:943-975.
  • [2]Beigel J, Bray M: Current and future antiviral therapy of severe seasonal and avian influenza. Antiviral Res 2008, 78(1):91-102.
  • [3]Sidwell RW, Smee DF: Experimental disease models of influenza virus infections:recentdevelopments. DrugDiscov Today 2004, 1(1):57-63.
  • [4]Ottolini MG, Blanco JC, Eichelberger MC, Porter DD, Pletneva L, Richardson JY, Prince GA: The cotton rat provides a useful small-animal model for the study of influenza virus pathogenesis. J Gen Virol 2005, 86(Pt 10):2823-2830.
  • [5]Van Hoeven N, Belser JA, Szretter KJ, Zeng H, Staeheli P, Swayne DE, Katz JM, Tumpey TM: Pathogenesis of the 1918 pandemic and H5N1 influenza virus infection in a guinea pig model: the antiviral potential of exogenous alpha-interferon to reduce virus shedding. J Virol 2009, 83(7):2851-2861.
  • [6]Taylor RM, Parodi AS: Use of hamster (cricetusauratus) for the detection of influenza virus in throat washings. ProcSocExpBiol Med 1942, 49(1):105-108.
  • [7]Munster VJ, de Wit E, van den Brand JM, Herfst S, Schrauwen EJ, Bestebroer TM, van de Vijver D, Boucher CA, Koopmans M, Rimmelzwaan GF, Kuiken T, Osterhaus AD, Fouchier RA: Pathogenesis and transmission of swine-origin 2009 a(H1N1) influenza virus in ferrets. Science 2009, 325(5939):481-483.
  • [8]Itoh Y, Shinya K, Kiso M, Watanabe T, Sakoda Y, Hatta M, Muramoto Y, Tamura D, Sakai-Tagawa Y, Noda T, Sakabe S, Imai M, Hatta Y, Watanabe S, Li C, Yamada S, Fujii K, Murakami S, Imai H, Kakugawa S, Ito M, Takano R, Iwatsuki-Horimoto K, Shimojima M, Horimoto T, Goto H, Takahashi K, Makino A, Ishigaki H, Nakayama M, et al.: In vitro and in vivo characterization of new swine-origin H1N1 influenza viruses. Nature 2009, 460(7258):1021-1025.
  • [9]Bouvier NM, Lowen AC: Animal models for influenza virus pathogenesis and transmission. Viruses 2010, 2(8):1530-1563.
  • [10]Smith W, Andrewes CH, Laidlaw PP: A virus obtained from influenza patients. Rev Med Virol 1995, 5(4):187-191.
  • [11]Francis T Jr: Transmission of influenza by a filterable virus. Science 1934, 80(2081):457-459.
  • [12]Maher JA, DeStefano J: The ferret: an animal model to study influenza virus. LabAnim (NY) 2004, 33(9):50-53.
  • [13]Kumar S, Hedges SB: A molecular timescale for vertebrate evolution. Nature 1998, 392(6679):917-920.
  • [14]Novacek MJ: Mammalian phylogeny: shaking the tree. Nature 1992, 356(6365):121-125.
  • [15]Cao J, Yang EB, Su JJ, Li Y, Chow P: The tree shrews: adjuncts and alternatives to primates as models for biomedical research. J Med Primatol 2003, 32(3):123-130.
  • [16]Xu XP, Chen HB, Ben KL: Application of tree shrew as an animal model in biomedical research. Acta Lab AnimSci Sin 2005, 13(3):49-52.
  • [17]Wu XX, Tang EH, Xie GZ, Wen YL, Liu MY, Zhu BY, Liang WS, Dai CB, Xiao HF, Dai ZX: Studies on serum complement fixation antibodies to Epstein-Barr virus in tupaias. ZhongguoYiXueKeXue Yuan XueBao 1982, 4(5):313-315.
  • [18]Pang QF, Wan XB, Chen SD, Xie XL: Treatment of rotavirus infection in tree shrews (tupaiabelangeriyunalis) with herbal valerianajatamansi (VJ). J Tradit Chin Med 1984, 4(4):301-306.
  • [19]Zhan MY, Liu CB, Li CM, Zhang WY, Zhu C, Pang QF, Zhao TX, Wang CA, Wang JL, Yu CY, Li SF, Tong ZG, Lin ZH, Niu JQ: A preliminary study of hepatitis a virus in Chinese Tupaia (author's transl). Zhongguo Yi XueKeXue Yuan XueBao 1981, 3(3):148-152.
  • [20]Yang EB, Cao J, Su JJ, Chow P: The tree shrews:useful animal models for the viral hepatitis and hepatocellular carcinoma. Hepatogastroenterology 2005, 52(62):613-616.
  • [21]Köck J, Nassal M, MacNelly S, Baumert TF, Blum HE, von Weizsäcker F: Efficient infection of primary Tupaia hepatocytes with purified human and woolly monkey hepatitis B virus. J Virol 2001, 75(11):5084-5089.
  • [22]Zhao X, Tang ZY, Klumpp B, Wolff-Vorbeck G, Barth H, Levy S, von Weizsäcker F, Blum HE, Baumert TF: Primary hepatocytes of tupaiabelangeri as a potential model for hepatitis C virus infection. JClin Invest 2002, 109(2):221-232.
  • [23]Wang XX, Li JX, Wang WG, Sun XM, He CY, Dai JJ: Preliminary investigation of viruses to the wild tree shrews (tupaiabelangeri Chinese). Dong wuxueYanjiu 2011, 32(1):66-69.
  • [24]Bahr U, Schöndorf E, Handermann M, Darai G: Molecular anatomy of Tupaia (tree shrew) adenovirus genome; evolution of viral genes and viral phylogeny. Virus Genes 2002, 27(1):29-48.
  • [25]Darai G, Matz B, Flügel RM, Grafe A, Gelderblom H, Delius H: An adenovirus from Tupaia(tree shrew): growth of the virus, characterization of viral DNA, and transforming ability. Virology 1980, 104(1):122-138.
  • [26]Darai G, Schwaier A, Komitowski D, Munk K: Experimental infection of Tupaia belangeri (tree shrews) with herpes simplex virus types 1 and 2. J Infect Dis 1978, 137(3):221-226.
  • [27]Collins PL, Wertz GW: The 1A protein gene of human respiratory syncytial virus: nucleotide sequence of the mRNA and a related polycistronic transcript. Virology 1985, 141(2):283-291.
  • [28]Hofmann W, Schubert D, LaBonte J, Munson L, Gibson S, Scammell J, Ferrigno P, Sodroski J: Species-specific, postentry barriers to primate immunodeficiency virus infection. J Virol 1999, 73(12):10020-10028.
  • [29]Yao L, Korteweg C, Hsueh W, Gu J: Avian influenza receptor expression in H5N1-infected and noninfected human tissues. FASEB J 2008, 22(3):733-740.
  • [30]van Riel D, Munster VJ, de Wit E, Rimmelzwaan GF, Fouchier RA, Osterhaus AD, Kuiken T: H5N1 Virus attachment to lower respiratory tract. Science 2006, 312(5772):399.
  • [31]van Riel D, Munster VJ, de Wit E, Rimmelzwaan GF, Fouchier RA, Osterhaus AD, Kuiken T: Human and avian influenza viruses target different cells in the lower respiratory tract of humans and other mammals. Am J Pathol 2007, 171(4):1215-1223.
  • [32]Shinya K, Ebina M, Yamada S, Ono M, Kasai N, Kawaoka Y: Avian flu: influenza virus receptors in the human airway. Nature 2006, 440(7083):435-436.
  • [33]Potter CW, Phair JP, Vodinelich L, Fenton R, Jennings R: Antiviral, immunosuppressive and antitumour effects of ribavirin. Nature 1976, 259(5543):496-497.
  • [34]Smith H, Sweet C: Lesson for human influenza from pathogenicity studies with ferrets. Rev Infect Dis 1988, 10(1):56-65.
  • [35]Taubenberger JK, Morens DM: The pathology of influenza virus infections. Annu Rev Pathol 2008, 3:499-522.
  • [36]Nicholls JM, Chan MC, Chan WY, Wong HK, Cheung CY, Kwong DL, Wong MP, Chui WH, Poon LL, Tsao SW, Guan Y, Peiris JS: Tropism of avian influenza a (H5N1) in the upper and lower respiratory tract. Nat Med 2007, 13(2):147-149.
  • [37]Stevens J, Blixt O, Tumpey TM, Taubenberger JK, Paulson JC, Wilson IA: Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus. Science 2006, 312(5772):404-410.
  • [38]Vollmann-Honsdorf GK, Flügge G, Fuchs E: Chronic psychosocial stress does not affect the number of pyramidal neurons in tree shrew. NeurosciLet 1997, 233(2–3):121-124.
  • [39]Kunming Medical University: Laboratory breeding method for cage bred tree shrew. The State Intellectual Property Office of the People's Republic of China (SIPO); 2010. patent application No.201010273025.0 P
  • [40]Kunming Medical University: Laboratory breeding method in large scale mating of tree shrew. China: The State Intellectual Property Office of the People's Republic of China (SIPO); 2010.
  • [41]Xu L, Chen SY, Nie WH, Jiang XL, Yao YG: Evaluating the phylogenetic position of Chinese tree shrew (tupaiabelangerichinensis) based on complete mitochondrial genome: implication for using tree shrew as an alternative experimental animal to primates in biomedical research. J Genet Genomics 2012, 39(3):131-137.
  • [42]McBrayer A, Camp JV, Tapp R, Yamshchikov V, Grimes S, Noah DL, Jonsson CB, Bruder CE: Course of seasonal influenza a/Brisbane/59/07 H1N1 infection in the ferret. Virol J 2010, 7:149. BioMed Central Full Text
  • [43]Reed LJ, Muench HA: A simple method of estimating fifty percent endpoints. Am J Epidemiol 1938, 27(3):493-497.
  • [44]Poon LL, Chan KH, Smith GJ, Leung CS, Guan Y, Yuen KY, Peiris JS: Molecular detection of a novel human influenza (H1N1) of pandemic potential by conventional and real-time quantitative RT-PCR assays. ClinChem 2009, 55(8):1555-1558.
  • [45]Govorkova EA, Webby RJ, Humberd J, Seiler JP, Webster RG: Immunization with reverse-genetics-produced H5N1 influenza vaccine protects ferrets against homologous and heterologous challenge. J Infect Dis 2006, 194(2):159-167.
  文献评价指标  
  下载次数:9次 浏览次数:8次