期刊论文详细信息
Source Code for Biology and Medicine
Inmembrane, a bioinformatic workflow for annotation of bacterial cell-surface proteomes
Bosco K Ho1  Andrew J Perry2 
[1] Monash eResearch Centre, Monash University, Melbourne, Australia;Department of Biochemistry, Monash University, Melbourne, Australia
关键词: Bacterial;    Python;    Membrane protein;    Proteomics;    Bioinformatics;   
Others  :  805756
DOI  :  10.1186/1751-0473-8-9
 received in 2012-05-02, accepted in 2013-03-03,  发布年份 2013
PDF
【 摘 要 】

Background

The annotation of surface exposed bacterial membrane proteins is an important step in interpretation and validation of proteomic experiments. In particular, proteins detected by cell surface protease shaving experiments can indicate exposed regions of membrane proteins that may contain antigenic determinants or constitute vaccine targets in pathogenic bacteria.

Results

Inmembrane is a tool to predict the membrane proteins with surface-exposed regions of polypeptide in sets of bacterial protein sequences. We have re-implemented a protocol for Gram-positive bacterial proteomes, and developed a new protocol for Gram-negative bacteria, which interface with multiple predictors of subcellular localization and membrane protein topology. Through the use of a modern scripting language, inmembrane provides an accessible code-base and extensible architecture that is amenable to modification for related sequence annotation tasks.

Conclusions

Inmembrane easily integrates predictions from both local binaries and web-based queries to help gain an overview of likely surface exposed protein in a bacterial proteome. The program is hosted on the Github repository http://github.com/boscoh/inmembrane webcite.

【 授权许可】

   
2013 Perry and Ho; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140708082939976.pdf 702KB PDF download
Figure 5. 130KB Image download
Figure 4. 88KB Image download
Figure 3. 82KB Image download
Figure 2. 50KB Image download
Figure 1. 84KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Yu NY, Wagner JR, Laird MR, Melli G, Rey S, Lo R, Dao P, Sahinalp SC, Ester M, Foster LJ, Brinkman FSL: PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 2010, 26:1608-1615.
  • [2]Yu C, Chen Y, Lu C, Hwang J: Prediction of protein subcellular localization. Proteins 2006, 64:643-651.
  • [3]Billion A, Ghai R, Chakraborty T, Hain T: Augur--a computational pipeline for whole genome microbial surface protein prediction and classification. Bioinformatics 2006, 22:2819-2820.
  • [4]Zhou M, Boekhorst J, Francke C, Siezen RJ: LocateP: genome-scale subcellular-location predictor for bacterial proteins. BMC Bioinforma 2008, 9:173. BioMed Central Full Text
  • [5]Barinov A, Loux V, Hammani A, Nicolas P, Langella P, Ehrlich D, Maguin E, Van de Guchte M: Prediction of surface exposed proteins in Streptococcus pyogenes, with a potential application to other Gram-positive bacteria. Proteomics 2009, 9:61-73.
  • [6]Kahsay RY, Gao G, Liao L: An improved hidden Markov model for transmembrane protein detection and topology prediction and its applications to complete genomes. Bioinformatics 2005, 21:1853-1858.
  • [7]Petersen TN, Brunak S, Von Heijne G, Nielsen H: SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 2011, 8:785-786.
  • [8]Juncker AS, Willenbrock H, Von Heijne G, Brunak S, Nielsen H, Krogh A: Prediction of lipoprotein signal peptides in Gram-negative bacteria. Protein Sci 2003, 12:1652-1662.
  • [9]HMMER. http://hmmer.org webcite
  • [10]Boekhorst J, De Been MWHJ, Kleerebezem M, Siezen RJ: Genome-wide detection and analysis of cell wall-bound proteins with LPxTG-like sorting motifs. J Bacteriol 2005, 187:4928-4934.
  • [11]Jonquieres R, Bierne H, Fiedler F, Gounon P, Cossart P: Interaction between the protein InlB of Listeria monocytogenes and lipoteichoic acid: a novel mechanism of protein association at the surface of Gram-positive bacteria. Mol Microbiol 1999, 34:902-914.
  • [12]Foster SJ: Cloning, expression, sequence analysis and biochemical characterization of an autolytic amidase of Bacillus subtilis 168 trpC2. J Gen Microbiol 1991, 137:1987-1998.
  • [13]Janecek T, Svensson B, Russell RRB: Location of repeat elements in glucansucrases of Leuconostoc and Streptococcus species. FEMS Microbiol Lett 2000, 192:53-57.
  • [14]Bateman A, Bycroft M: The structure of a LysM domain from E. coli membrane-bound lytic murein transglycosylase D (MltD). J Mol Biol 2000, 299:1113-1119.
  • [15]Waligora AJ, Hennequin C, Mullany P, Bourlioux P, Collignon A, Karjalainen T: Characterization of a cell surface protein of Clostridium difficile with adhesive properties. Infect Immun 2001, 69:2144-2153.
  • [16]Mesnage S, Fontaine T, Mignot T, Delepierre M, Mock M, Fouet A: Bacterial SLH domain proteins are non-covalently anchored to the cell surface via a conserved mechanism involving wall polysaccharide pyruvylation. EMBO J 2000, 19:4473-4484.
  • [17]Anantharaman V, Aravind L: New connections in the prokaryotic toxin-antitoxin network: relationship with the eukaryotic nonsense-mediated RNA decay system. Genome Biol 2003, 4:R81. BioMed Central Full Text
  • [18]Krogh A, Larsson B, Von Heijne G, Sonnhammer EL: Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 2001, 305:567-580.
  • [19]Jones DT: Improving the accuracy of transmembrane protein topology prediction using evolutionary information. Bioinformatics 2007, 23:538-544.
  • [20]Rose RW, Brüser T, Kissinger JC, Pohlschröder M: Adaptation of protein secretion to extremely high-salt conditions by extensive use of the twin-arginine translocation pathway. Mol Microbiol 2002, 45:943-950.
  • [21]Sigrist CJ A, Cerutti L, Hulo N, Gattiker A, Falquet L, Pagni M, Bairoch A, Bucher P: PROSITE: a documented database using patterns and profiles as motif descriptors. Brief Bioinform 2002, 3:265-274.
  • [22]Masuda K, Matsuyama S, Tokuda H: Elucidation of the function of lipoprotein-sorting signals that determine membrane localization. Proc Natl Acad Sci U S A 2002, 99:7390-7395.
  • [23]Berven FS, Flikka K, Jensen HB, Eidhammer I: BOMP: a program to predict integral beta-barrel outer membrane proteins encoded within genomes of Gram-negative bacteria. Nucleic Acids Res 2004, 32:W394-W399.
  • [24]Garrow AG, Agnew A, Westhead DR: TMB-Hunt: an amino acid composition based method to screen proteomes for beta-barrel transmembrane proteins. BMC Bioinforma 2005, 6:56. BioMed Central Full Text
  • [25]Ou Y-YY, Gromiha MMM, Chen S-AA, Suwa M: TMBETADISC-RBF: discrimination of beta-barrel membrane proteins using RBF networks and PSSM profiles. Comput Biol Chem 2008, 31:227-231.
  • [26]Gromiha MM, Ahmad S, Suwa M: Neural network-based prediction of transmembrane beta-strand segments in outer membrane proteins. J Comput Chem 2004, 25:762-767.
  • [27]Bagos PG, Liakopoulos TD, Hamodrakas SJ: Evaluation of methods for predicting the topology of beta-barrel outer membrane proteins and a consensus prediction method. BMC Bioinforma 2005, 6:7. BioMed Central Full Text
  • [28]Veretnik S, Fink JL, Bourne PE: Computational biology resources lack persistence and usability. PLoS Comput Biol 2008, 4:e1000136.
  • [29]Bassi S: A primer on python for life science researchers. PLoS Comput Biol 2007, 3:e199.
  • [30]twill. http://twill.idyll.org/ webcite
  • [31]BeautifulSoup. http://www.crummy.com/software/BeautifulSoup/ webcite
  文献评价指标  
  下载次数:17次 浏览次数:23次