期刊论文详细信息
Molecular Cytogenetics
Isochromosome 13 in a patient with childhood-onset schizophrenia, ADHD, and motor tic disorder
Sherry Leonard1  Randall G Ross4  Marianne Z Wamboldt3  Billie J Carstens2  Kirsten Floyd4  Karen Swisshelm2  Sharon L Graw4 
[1] Research Division, Veterans Affairs Medical Research Service, Denver, CO, USA;Colorado Genetics Laboratory, Department of Pathology, University of Colorado School of Medicine, Aurora, CO, USA;Department of Psychiatry and Behavioral Science, Children's Hospital Colorado, Aurora, CO, USA;Department of Psychiatry, University of Colorado School of Medicine, Aurora, CO, USA
关键词: childhood;    Schizophrenia;    Isochromosome;    Chromosome 13;    Attention deficit hyperactivity disorder;   
Others  :  1151936
DOI  :  10.1186/1755-8166-5-2
 received in 2011-08-25, accepted in 2012-01-03,  发布年份 2012
PDF
【 摘 要 】

Background

A small percentage of all cases of schizophrenia have a childhood onset. The impact on the individual and family can be devastating. We report the results of genetic analyses from a patient with onset of visual hallucinations at 5 years, and a subsequent diagnosis at 9 years of schizophrenia, attention deficit hyperactivity disorder (ADHD) with hyperactivity and impulsivity, and chronic motor tic disorder.

Results

Karyotypic analysis found 45,XX,i(13)(q10) in all cells examined. Alpha satellite FISH of isochromosome 13 revealed a large unsplit centromeric region, interpreted as two centromeres separated by minimal or undetectable short-arm material or as a single monocentric centromere, indicating that the isochromosome likely formed post-zygotically by a short arm U-type or centromeric exchange. Characterization of chromosome 13 simple tandem repeats and Affymetrix whole-genome 6.0 SNP array hybridization found homozygosity for all markers, and the presence of only a single paternal allele in informative markers, consistent with an isodisomic isochromosome of paternal origin. Analysis of two chromosome 13 schizophrenia candidate genes, D-amino acid oxidase activator (DAOA) and 5-hydroxytryptamine (serotonin) receptor 2A (5-HTR2A), failed to identify non-synonymous coding mutations but did identify homozygous risk polymorphisms.

Conclusions

We report a female patient with childhood-onset schizophrenia, ADHD, and motor tic disorder associated with an isodisomic isochromosome 13 of paternal origin and a 45,XX,i(13)(q10q10) karyotype. We examined two potential mechanisms to explain chromosome 13 involvement in the patient's pathology, including reduction to homozygosity of a paternal mutation and reduction to homozygosity of a paternal copy number variation, but were unable to identify any overtly pathogenic abnormality. Future studies may consider whether epigenetic mechanisms resulting from uniparental disomy (UPD) and the lack of chromosome 13 maternal alleles lead to the patient's features.

【 授权许可】

   
2012 Graw et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150406114807804.pdf 2648KB PDF download
Figure 4. 101KB Image download
Figure 3. 53KB Image download
Figure 2. 61KB Image download
Figure 1. 48KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]American Psychiatric Association: Diagnostic and statistical manual of mental disorders. Washington, D.C.; 1994.
  • [2]Cannon M, Jones P, Huttunen MO, Tanskanen A, Huttunen T, Rabe-Hesketh S, Murray RM: School performance in Finnish children and later development of schizophrenia: a population-based longitudinal study. Arch Gen Psychiatry 1999, 56:457-463.
  • [3]Ross RG, Olincy A, Harris JG, Radant A, Hawkins M, Adler LE, Freedman R: Evidence for bilineal inheritance of physiological indicators of risk in childhood-onset schizophrenia. Am J Med Genet 1999, 88:188-199.
  • [4]Kyriakopoulos M, Frangou S: Pathophysiology of early onset schizophrenia. Int Rev Psychiatry 2007, 19:315-324.
  • [5]Leonard S, Freedman R: Genetics of chromosome 15q13-q14 in schizophrenia. Biol Psychiatry 2006, 60:115-122.
  • [6]Muller DJ, Zai CC, Shinkai T, Strauss J, Kennedy JL: Association between the DAOA/G72 gene and bipolar disorder and meta-analyses in bipolar disorder and schizophrenia. Bipolar Disord 2011, 13:198-207.
  • [7]Harrison PJ, Weinberger DR: Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol Psychiatry 2005, 10:40-68.
  • [8]Athanasiu L, Mattingsdal M, Kahler AK, Brown A, Gustafsson O, Agartz I, Giegling I, Muglia P, Cichon S, Rietschel M, Pietilainen OP, Peltonen L, Bramon E, Collier D, Clair DS, Sigurdsson E, Petursson H, Rujescu D, Melle I, Steen VM, Djurovic S, Andreassen OA: Gene variants associated with schizophrenia in a Norwegian genome-wide study are replicated in a large European cohort. J Psychiatr Res 2010, 44:748-753.
  • [9]Purcell SM, Wray NR, Stone JL, Visscher PM, O'Donovan MC, Sullivan PF, Sklar P: Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 2009, 460:748-752.
  • [10]Kirov G, Zaharieva I, Georgieva L, Moskvina V, Nikolov I, Cichon S, Hillmer A, Toncheva D, Owen MJ, O'Donovan MC: A genome-wide association study in 574 schizophrenia trios using DNA pooling. Mol Psychiatry 2009, 14:796-803.
  • [11]Lencz T, Morgan TV, Athanasiou M, Dain B, Reed CR, Kane JM, Kucherlapati R, Malhotra AK: Converging evidence for a pseudoautosomal cytokine receptor gene locus in schizophrenia. Mol Psychiatry 2007, 12:572-580.
  • [12]Liu Y, Chen G, Norton N, Liu W, Zhu H, Zhou P, Luan M, Yang S, Chen X, Carroll L, Williams NM, O'Donovan MC, Kirov G, Owen MJ: Whole genome association study in a homogenous population in Shandong peninsula of China reveals JARID2 as a susceptibility gene for schizophrenia. J Biomed Biotechnol 2009, 2009:536918.
  • [13]Mah S, Nelson MR, Delisi LE, Reneland RH, Markward N, James MR, Nyholt DR, Hayward N, Handoko H, Mowry B, Kammerer S, Braun A: Identification of the semaphorin receptor PLXNA2 as a candidate for susceptibility to schizophrenia. Mol Psychiatry 2006, 11:471-478.
  • [14]Need AC, Ge D, Weale ME, Maia J, Feng S, Heinzen EL, Shianna KV, Yoon W, Kasperaviciute D, Gennarelli M, Strittmatter WJ, Bonvicini C, Rossi G, Jayathilake K, Cola PA, McEvoy JP, Keefe RS, Fisher EM, St Jean PL, Giegling I, Hartmann AM, Moller HJ, Ruppert A, Fraser G, Crombie C, Middleton LT, St CD, Roses AD, Muglia P, Francks C, et al.: A genome-wide investigation of SNPs and CNVs in schizophrenia. PLoS Genet 2009, 5:e1000373.
  • [15]Shi J, Levinson DF, Duan J, Sanders AR, Zheng Y, Pe'er I, Dudbridge F, Holmans PA, Whittemore AS, Mowry BJ, Olincy A, Amin F, Cloninger CR, Silverman JM, Buccola NG, Byerley WF, Black DW, Crowe RR, Oksenberg JR, Mirel DB, Kendler KS, Freedman R, Gejman PV: Common variants on chromosome 6p22.1 are associated with schizophrenia. Nature 2009, 460:753-757.
  • [16]Shifman S, Johannesson M, Bronstein M, Chen SX, Collier DA, Craddock NJ, Kendler KS, Li T, O'Donovan M, O'Neill FA, Owen MJ, Walsh D, Weinberger DR, Sun C, Flint J, Darvasi A: Genome-wide association identifies a common variant in the reelin gene that increases the risk of schizophrenia only in women. PLoS Genet 2008, 4:e28.
  • [17]Stefansson H, Ophoff RA, Steinberg S, Andreassen OA, Cichon S, Rujescu D, Werge T, Pietilainen OP, Mors O, Mortensen PB, Sigurdsson E, Gustafsson O, Nyegaard M, Tuulio-Henriksson A, Ingason A, Hansen T, Suvisaari J, Lonnqvist J, Paunio T, Borglum AD, Hartmann A, Fink-Jensen A, Nordentoft M, Hougaard D, Norgaard-Pedersen B, Bottcher Y, Olesen J, Breuer R, Moller HJ, Giegling I, et al.: Common variants conferring risk of schizophrenia. Nature 2009, 460:744-747.
  • [18]Sullivan PF: The psychiatric GWAS consortium: big science comes to psychiatry. Neuron 2010, 68:182-186.
  • [19]O'Donovan MC, Craddock N, Norton N, Williams H, Peirce T, Moskvina V, Nikolov I, Hamshere M, Carroll L, Georgieva L, Dwyer S, Holmans P, Marchini JL, Spencer CC, Howie B, Leung HT, Hartmann AM, Moller HJ, Morris DW, Shi Y, Feng G, Hoffmann P, Propping P, Vasilescu C, Maier W, Rietschel M, Zammit S, Schumacher J, Quinn EM, Schulze TG, et al.: Identification of loci associated with schizophrenia by genome-wide association and follow-up. Nat Genet 2008, 40:1053-1055.
  • [20]Potkin SG, Turner JA, Guffanti G, Lakatos A, Fallon JH, Nguyen DD, Mathalon D, Ford J, Lauriello J, Macciardi F: A genome-wide association study of schizophrenia using brain activation as a quantitative phenotype. Schizophr Bull 2009, 35:96-108.
  • [21]Ripke S, Sanders AR, Kendler KS, Levinson DF, Sklar P, Holmans PA, Lin DY, Duan J, Ophoff RA, Andreassen OA, Scolnick E, Cichon S, St CD, Corvin A, Gurling H, Werge T, Rujescu D, Blackwood DH, Pato CN, Malhotra AK, Purcell S, Dudbridge F, Neale BM, Rossin L, Visscher PM, Posthuma D, Ruderfer DM, Fanous A, Stefansson H, Steinberg S, et al.: Genome-wide association study identifies five new schizophrenia loci. Nat Genet 2011, 43:969-976.
  • [22]Stefansson H, Rujescu D, Cichon S, Pietilainen OP, Ingason A, Steinberg S, Fossdal R, Sigurdsson E, Sigmundsson T, Buizer-Voskamp JE, Hansen T, Jakobsen KD, Muglia P, Francks C, Matthews PM, Gylfason A, Halldorsson BV, Gudbjartsson D, Thorgeirsson TE, Sigurdsson A, Jonasdottir A, Jonasdottir A, Bjornsson A, Mattiasdottir S, Blondal T, Haraldsson M, Magnusdottir BB, Giegling I, Moller HJ, Hartmann A, et al.: Large recurrent microdeletions associated with schizophrenia. Nature 2008, 455:232-236.
  • [23]McCarthy SE, Makarov V, Kirov G, Addington AM, McClellan J, Yoon S, Perkins DO, Dickel DE, Kusenda M, Krastoshevsky O, Krause V, Kumar RA, Grozeva D, Malhotra D, Walsh T, Zackai EH, Kaplan P, Ganesh J, Krantz ID, Spinner NB, Roccanova P, Bhandari A, Pavon K, Lakshmi B, Leotta A, Kendall J, Lee YH, Vacic V, Gary S, Iakoucheva LM, et al.: Microduplications of 16p11.2 are associated with schizophrenia. Nat Genet 2009, 41:1223-1227.
  • [24]Levinson DF, Duan J, Oh S, Wang K, Sanders AR, Shi J, Zhang N, Mowry BJ, Olincy A, Amin F, Cloninger CR, Silverman JM, Buccola NG, Byerley WF, Black DW, Kendler KS, Freedman R, Dudbridge F, Pe'er I, Hakonarson H, Bergen SE, Fanous AH, Holmans PA, Gejman PV: Copy number variants in schizophrenia: confirmation of five previous findings and new evidence for 3q29 microdeletions and VIPR2 duplications. Am J Psychiatry 2011, 168:302-316.
  • [25]International Schizophrenia Consortium: Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature 2008, 455:237-241.
  • [26]Brown AS, Derkits EJ: Prenatal infection and schizophrenia: a review of epidemiologic and translational studies. Am J Psychiatry 2010, 167:261-280.
  • [27]Wicks S, Hjern A, Dalman C: Social risk or genetic liability for psychosis? A study of children born in Sweden and reared by adoptive parents. Am J Psychiatry 2010, 167:1240-1246.
  • [28]Dragt S, Nieman DH, Veltman D, Becker HE, van de Fliert R, de HL, Linszen DH: Environmental factors and social adjustment as predictors of a first psychosis in subjects at ultra high risk. Schizophr Res 2011, 125:69-76.
  • [29]Andreasson S, Allebeck P, Engstrom A, Rydberg U: Cannabis and schizophrenia. A longitudinal study of Swedish conscripts. Lancet 1987, 2:1483-1486.
  • [30]Yue W, Liu Z, Kang G, Yan J, Tang F, Ruan Y, Zhang J, Zhang D: Association of G72/G30 polymorphisms with early-onset and male schizophrenia. Neuroreport 2006, 17:1899-1902.
  • [31]Addington AM, Gornick MC, Shaw P, Seal J, Gogtay N, Greenstein D, Clasen L, Coffey M, Gochman P, Long R, Rapoport JL: Neuregulin 1 (8p12) and childhood-onset schizophrenia: susceptibility haplotypes for diagnosis and brain developmental trajectories. Mol Psychiatry 2007, 12:195-205.
  • [32]Gornick MC, Addington AM, Sporn A, Gogtay N, Greenstein D, Lenane M, Gochman P, Ordonez A, Balkissoon R, Vakkalanka R, Weinberger DR, Rapoport JL, Straub RE: Dysbindin (DTNBP1, 6p22.3) is associated with childhood-onset psychosis and endophenotypes measured by the Premorbid Adjustment Scale (PAS). J Autism Dev Disord 2005, 35:831-838.
  • [33]Straub RE, Jiang Y, MacLean CJ, Ma Y, Webb BT, Myakishev MV, Harris-Kerr C, Wormley B, Sadek H, Kadambi B, Cesare AJ, Gibberman A, Wang X, O'Neill FA, Walsh D, Kendler KS: Genetic variation in the 6p22.3 gene DTNBP1, the human ortholog of the mouse dysbindin gene, is associated with schizophrenia. Am J Hum Genet 2002, 71:337-348.
  • [34]Addington AM, Gornick M, Duckworth J, Sporn A, Gogtay N, Bobb A, Greenstein D, Lenane M, Gochman P, Baker N, Balkissoon R, Vakkalanka RK, Weinberger DR, Rapoport JL, Straub RE: GAD1 (2q31.1), which encodes glutamic acid decarboxylase (GAD67), is associated with childhood-onset schizophrenia and cortical gray matter volume loss. Mol Psychiatry 2005, 10:581-588.
  • [35]Addington AM, Rapoport JL: The genetics of childhood-onset schizophrenia: when madness strikes the prepubescent. Curr Psychiatry Rep 2009, 11:156-161.
  • [36]Kaufman J, Birmaher B, Brent D, Rao U, Flynn C, Moreci P, Williamson D, Ryan N: Schedule for Affective Disorders and Schizophrenia for School-Age Children-Present and Lifetime Version (K-SADS-PL): initial reliability and validity data. J Am Acad Child Adolesc Psychiatry 1997, 36:980-988.
  • [37]Bassett AS, Chow EW: Schizophrenia and 22q11.2 deletion syndrome. Curr Psychiatry Rep 2008, 10:148-157.
  • [38]Flomen RH, Collier DA, Osborne S, Munro J, Breen G, St CD, Makoff AJ: Association study of CHRFAM7A copy number and 2 bp deletion polymorphisms with schizophrenia and bipolar affective disorder. Am J Med Genet B Neuropsychiatr Genet 2006, (141B):571-575.
  • [39]Sinkus ML, Lee MJ, Gault J, Logel J, Short M, Freedman R, Christian SL, Lyon J, Leonard S: A 2-base pair deletion polymorphism in the partial duplication of the alpha7 nicotinic acetylcholine gene (CHRFAM7A) on chromosome 15q14 is associated with schizophrenia. Brain Res 2009, 1291:1-11.
  • [40]Araud T, Graw S, Berger R, Lee M, Neveu E, Bertrand D, Leonard S: The chimeric gene CHRFAM7A, a partial duplication of the CHRNA7 gene, is a dominant negative regulator of alpha7*nAChR function. Biochem Pharmacol 2011, 82:904-914.
  • [41]de Lucas-Cerrillo AM, Maldifassi MC, Arnalich F, Renart J, Atienza G, Serantes R, Cruces J, Sanchez-Pacheco A, Andres-Mateos E, Montiel C: Function of partially duplicated human alpha77 nicotinic receptor subunit CHRFAM7A gene: potential implications for the cholinergic anti-inflammatory response. J Biol Chem 2011, 286:594-606.
  • [42]Addington AM, Gornick M, Sporn AL, Gogtay N, Greenstein D, Lenane M, Gochman P, Baker N, Balkissoon R, Vakkalanka RK, Weinberger DR, Straub RE, Rapoport JL: Polymorphisms in the 13q33.2 gene G72/G30 are associated with childhood-onset schizophrenia and psychosis not otherwise specified. Biol Psychiatry 2004, 55:976-980.
  • [43]Abdolmaleky HM, Faraone SV, Glatt SJ, Tsuang MT: Meta-analysis of association between the T102C polymorphism of the 5HT2a receptor gene and schizophrenia. Schizophr Res 2004, 67:53-62.
  • [44]Zhang H, Ju G, Wei J, Hu Y, Liu L, Xu Q, Chen Y, Sun Z, Liu S, Yu Y, Guo Y, Shen Y: A combined effect of the KPNA3 and KPNB3 genes on susceptibility to schizophrenia. Neurosci Lett 2006, 402:173-175.
  • [45]Fananas L, Moral P, Marti Tusquets JL, Bertranpetit J: Genetic markers in schizophrenia: ACP1, ESD, TF and GC polymorphisms. Hum Hered 1990, 40:136-140.
  • [46]Vincent JB, Yuan QP, Schalling M, Adolfsson R, Azevedo MH, Macedo A, Bauer A, DallaTorre C, Medeiros HM, Pato MT, Pato CN, Bowen T, Guy CA, Owen MJ, O'Donovan MC, Paterson AD, Petronis A, Kennedy JL: Long repeat tracts at SCA8 in major psychosis. Am J Med Genet 2000, 96:873-876.
  • [47]Yanagi M, Hashimoto T, Kitamura N, Fukutake M, Komure O, Nishiguchi N, Kawamata T, Maeda K, Shirakawa O: Expression of Kruppel-like factor 5 gene in human brain and association of the gene with the susceptibility to schizophrenia. Schizophr Res 2008, 100:291-301.
  • [48]Zhang R, Zhong NN, Liu XG, Yan H, Qiu C, Han Y, Wang W, Hou WK, Liu Y, Gao CG, Guo TW, Lu SM, Deng HW, Ma J: Is the EFNB2 locus associated with schizophrenia? Single nucleotide polymorphisms and haplotypes analysis. Psychiatry Res 2010, 180:5-9.
  • [49]Bray NJ, Kirov G, Owen RJ, Jacobsen NJ, Georgieva L, Williams HJ, Norton N, Spurlock G, Jones S, Zammit S, O'Donovan MC, Owen MJ: Screening the human protocadherin 8 (PCDH8) gene in schizophrenia. Genes Brain Behav 2002, 1:187-191.
  • [50]Shaffer LG, Lupski JR: Molecular mechanisms for constitutional chromosomal rearrangements in humans. Annu Rev Genet 2000, 34:297-329.
  • [51]Berend SA, Feldman GL, McCaskill C, Czarnecki P, Van Dyke DL, Shaffer LG: Investigation of two cases of paternal disomy 13 suggests timing of isochromosome formation and mechanisms leading to uniparental disomy. Am J Med Genet 1999, 82:275-281.
  • [52]Soler A, Margarit E, Queralt R, Carrio A, Costa D, Gomez D, Ballesta F: Paternal isodisomy 13 in a normal newborn infant after trisomy rescue evidenced by prenatal diagnosis. Am J Med Genet 2000, 90:291-293.
  • [53]Slater H, Shaw JH, Dawson G, Bankier A, Forrest SM: Maternal uniparental disomy of chromosome 13 in a phenotypically normal child. J Med Genet 1994, 31:644-646.
  • [54]Roberts SH, Cowie VA, Singh KR: Intrachromosomal insertion of chromosome 13 in a family with psychosis and mental subnormality. J Ment Defic Res 1986, 30(Pt 3):227-232.
  • [55]Itokawa M, Kasuga T, Yoshikawa T, Matsushita M: Identification of a male schizophrenic patient carrying a de novo balanced translocation, t(4; 13)(p16.1; q21.31). Psychiatry Clin Neurosci 2004, 58:333-337.
  • [56]Escobar JI: A cytogenetic study of children with psychiatric disorders. Compr Psychiatry 1976, 17:309-313.
  • [57]Price WH, Brunton M, Buckton K, Jacobs PA: Chromosome survey of new patients admitted to the four maximum security hospitals in the United Kingdom. Clin Genet 1976, 9:389-398.
  • [58]Macintyre DJ, Blackwood DH, Porteous DJ, Pickard BS, Muir WJ: Chromosomal abnormalities and mental illness. Mol Psychiatry 2003, 8:275-287.
  • [59]Chen CP, Chern SR, Wu PC, Tsai FJ, Lee CC, Town DD, Chen WL, Chen LF, Lee MS, Pan CW, Wang W: Unbalanced and balanced acrocentric rearrangements involving chromosomes other than chromosome 21 at amniocentesis. Taiwan J Obstet Gynecol 2009, 48:389-399.
  • [60]Pidsley R, Mill J: Epigenetic studies of psychosis: current findings, methodological approaches, and implications for postmortem research. Biol Psychiatry 2011, 69:146-156.
  • [61]Perrin M, Kleinhaus K, Messinger J, Malaspina D: Critical periods and the developmental origins of disease: an epigenetic perspective of schizophrenia. Ann N Y Acad Sci 2010, (1204 Suppl):E8-13.
  • [62]Brown AS: The environment and susceptibility to schizophrenia. Prog Neurobiol 2011, 93:23-58.
  • [63]Akbarian S: Epigenetics of schizophrenia. Curr Top Behav Neurosci 2010, 4:611-628.
  • [64]Lester BM, Tronick E, Nestler E, Abel T, Kosofsky B, Kuzawa CW, Marsit CJ, Maze I, Meaney MJ, Monteggia LM, Reul JM, Skuse DH, Sweatt JD, Wood MA: Behavioral epigenetics. Ann N Y Acad Sci 2011, 1226:14-33.
  • [65]Bunzel R, Blumcke I, Cichon S, Normann S, Schramm J, Propping P, Nothen MM: Polymorphic imprinting of the serotonin-2A (5-HT2A) receptor gene in human adult brain. Brain Res Mol Brain Res 1998, 59:90-92.
  • [66]Kato MV, Shimizu T, Nagayoshi M, Kaneko A, Sasaki MS, Ikawa Y: Genomic imprinting of the human serotonin-receptor (HTR2) gene involved in development of retinoblastoma. Am J Hum Genet 1996, 59:1084-1090.
  • [67]Kato MV, Ikawa Y, Hayashizaki Y, Shibata H: Paternal imprinting of mouse serotonin receptor 2A gene Htr2 in embryonic eye: a conserved imprinting regulation on the RB/Rb locus. Genomics 1998, 47:146-148.
  • [68]Fukuda Y, Koga M, Arai M, Noguchi E, Ohtsuki T, Horiuchi Y, Ishiguro H, Niizato K, Iritani S, Itokawa M, Arinami T: Monoallelic and unequal allelic expression of the HTR2A gene in human brain and peripheral lymphocytes. Biol Psychiatry 2006, 60:1331-1335.
  • [69]Bray NJ, Buckland PR, Hall H, Owen MJ, O'Donovan MC: The serotonin-2A receptor gene locus does not contain common polymorphism affecting mRNA levels in adult brain. Mol Psychiatry 2004, 9:109-114.
  • [70]Polesskaya OO, Aston C, Sokolov BP: Allele C-specific methylation of the 5-HT2A receptor gene: evidence for correlation with its expression and expression of DNA methylase DNMT1. J Neurosci Res 2006, 83:362-373.
  • [71]Polesskaya OO, Sokolov BP: Differential expression of the "C" and "T" alleles of the 5-HT2A receptor gene in the temporal cortex of normal individuals and schizophrenics. J Neurosci Res 2002, 67:812-822.
  • [72]Abdolmaleky HM, Yaqubi S, Papageorgis P, Lambert AW, Ozturk S, Sivaraman V, Thiagalingam S: Epigenetic dysregulation of HTR2A in the brain of patients with schizophrenia and bipolar disorder. Schizophr Res 2011, 129:183-190.
  • [73]Seal JL, Gornick MC, Gogtay N, Shaw P, Greenstein DK, Coffey M, Gochman PA, Stromberg T, Chen Z, Merriman B, Nelson SF, Brooks J, Arepalli S, Wavrant-De VF, Hardy J, Rapoport JL, Addington AM: Segmental uniparental isodisomy on 5q32-qter in a patient with childhood-onset schizophrenia. J Med Genet 2006, 43:887-892.
  • [74]Straub RE, MacLean CJ, O'Neill FA, Walsh D, Kendler KS: Support for a possible schizophrenia vulnerability locus in region 5q22-31 in Irish families. Mol Psychiatry 1997, 2:148-155.
  • [75]Lewis CM, Levinson DF, Wise LH, Delisi LE, Straub RE, Hovatta I, Williams NM, Schwab SG, Pulver AE, Faraone SV, Brzustowicz LM, Kaufmann CA, Garver DL, Gurling HM, Lindholm E, Coon H, Moises HW, Byerley W, Shaw SH, Mesen A, Sherrington R, O'Neill FA, Walsh D, Kendler KS, Ekelund J, Paunio T, Lonnqvist J, Peltonen L, O'Donovan MC, Owen MJ, et al.: Genome scan meta-analysis of schizophrenia and bipolar disorder, part II: Schizophrenia. Am J Hum Genet 2003, 73:34-48.
  • [76]Gurling HM, Kalsi G, Brynjolfson J, Sigmundsson T, Sherrington R, Mankoo BS, Read T, Murphy P, Blaveri E, McQuillin A, Petursson H, Curtis D: Genomewide genetic linkage analysis confirms the presence of susceptibility loci for schizophrenia, on chromosomes 1q32.2, 5q33.2, and 8p21-22 and provides support for linkage to schizophrenia, on chromosomes 11q23.3-24 and 20q12.1-11.23. Am J Hum Genet 2001, 68:661-673.
  • [77]Schwab SG, Eckstein GN, Hallmayer J, Lerer B, Albus M, Borrmann M, Lichtermann D, Ertl MA, Maier W, Wildenauer DB: Evidence suggestive of a locus on chromosome 5q31 contributing to susceptibility for schizophrenia in German and Israeli families by multipoint affected sib-pair linkage analysis. Mol Psychiatry 1997, 2:156-160.
  • [78]Paunio T, Ekelund J, Varilo T, Parker A, Hovatta I, Turunen JA, Rinard K, Foti A, Terwilliger JD, Juvonen H, Suvisaari J, Arajarvi R, Suokas J, Partonen T, Lonnqvist J, Meyer J, Peltonen L: Genome-wide scan in a nationwide study sample of schizophrenia families in Finland reveals susceptibility loci on chromosomes 2q and 5q. Hum Mol Genet 2001, 10:3037-3048.
  • [79]Devlin B, Bacanu SA, Roeder K, Reimherr F, Wender P, Galke B, Novasad D, Chu A, TCuenco K, Tiobek S, Otto C, Byerley W: Genome-wide multipoint linkage analyses of multiplex schizophrenia pedigrees from the oceanic nation of Palau. Mol Psychiatry 2002, 7:689-694.
  • [80]Sklar P, Pato MT, Kirby A, Petryshen TL, Medeiros H, Carvalho C, Macedo A, Dourado A, Coelho I, Valente J, Soares MJ, Ferreira CP, Lei M, Verner A, Hudson TJ, Morley CP, Kennedy JL, Azevedo MH, Lander E, Daly MJ, Pato CN: Genome-wide scan in Portuguese Island families identifies 5q31-5q35 as a susceptibility locus for schizophrenia and psychosis. Mol Psychiatry 2004, 9:213-218.
  • [81]Pimm J, McQuillin A, Thirumalai S, Lawrence J, Quested D, Bass N, Lamb G, Moorey H, Datta SR, Kalsi G, Badacsonyi A, Kelly K, Morgan J, Punukollu B, Curtis D, Gurling H: The Epsin 4 gene on chromosome 5q, which encodes the clathrin-associated protein enthoprotin, is involved in the genetic susceptibility to schizophrenia. Am J Hum Genet 2005, 76:902-907.
  • [82]Zaharieva I, Georgieva L, Nikolov I, Kirov G, Owen MJ, O'Donovan MC, Toncheva D: Association study in the 5q31-32 linkage region for schizophrenia using pooled DNA genotyping. BMC Psychiatry 2008, 8:11.
  • [83]Gustashaw KM: Chromosome stains. In The AGT cytogenetic laboratory manual. 3rd edition. Edited by Barch,MJ, Knutsen, T., and Spurbeck, J. L. Philadelphia: Lippincott-Raven; 1997:269-280.
  • [84]Sambrook J, Russell DW: Molecular Cloning A Laboratory Manual. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press; 2001.
  • [85]Karayiorgou M, Simon TJ, Gogos JA: 22q11.2 microdeletions: linking DNA structural variation to brain dysfunction and schizophrenia. Nat Rev Neurosci 2010, 11:402-416.
  文献评价指标  
  下载次数:42次 浏览次数:7次