期刊论文详细信息
Particle and Fibre Toxicology
Implications of climate change on the distribution of the tick vector Ixodes scapularis and risk for Lyme disease in the Texas-Mexico transboundary region
Maria D Esteve-Gassent4  Adalberto A Pérez de León5  Raul F Medina6  Javier Torres2  Abha Grover4  Margarita Vargas-Sandoval1  Ana L Cavazos3  Guadalupe Gordillo-Perez2  Ivan Castro-Arellano7  Teresa P Feria-Arroyo3 
[1] Facultad de Agrobiología, Universidad Michoacana de San Nicolás de Hidalgo, Uruapan, 60090 Michoacan, Mexico;Unidad de Investigación en Enfermedades Infecciosas, Centro Médico Nacional SXXI, IMSS, Distrito Federal 06720, Mexico;Department of Biology, The University of Texas-Pan American, Edinburg, TX 78539, USA;Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA;USDA-ARS Knipling-Bushland U.S. Livestock Insects Research Laboratory, Kerrville, TX 78028, USA;Department of Entomology, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX 77843, USA;Department of Biology, College of Science and Engineering, Texas State University, San Marcos, TX 78666, USA
关键词: Climate change;    Lyme disease risk map;    Transboundary disease;    Borrelia burgdorferi;    Ixodes scapularis;   
Others  :  807066
DOI  :  10.1186/1756-3305-7-199
 received in 2014-02-05, accepted in 2014-04-18,  发布年份 2014
PDF
【 摘 要 】

Background

Disease risk maps are important tools that help ascertain the likelihood of exposure to specific infectious agents. Understanding how climate change may affect the suitability of habitats for ticks will improve the accuracy of risk maps of tick-borne pathogen transmission in humans and domestic animal populations. Lyme disease (LD) is the most prevalent arthropod borne disease in the US and Europe. The bacterium Borrelia burgdorferi causes LD and it is transmitted to humans and other mammalian hosts through the bite of infected Ixodes ticks. LD risk maps in the transboundary region between the U.S. and Mexico are lacking. Moreover, none of the published studies that evaluated the effect of climate change in the spatial and temporal distribution of I. scapularis have focused on this region.

Methods

The area of study included Texas and a portion of northeast Mexico. This area is referred herein as the Texas-Mexico transboundary region. Tick samples were obtained from various vertebrate hosts in the region under study. Ticks identified as I. scapularis were processed to obtain DNA and to determine if they were infected with B. burgdorferi using PCR. A maximum entropy approach (MAXENT) was used to forecast the present and future (2050) distribution of B. burgdorferi-infected I. scapularis in the Texas-Mexico transboundary region by correlating geographic data with climatic variables.

Results

Of the 1235 tick samples collected, 109 were identified as I. scapularis. Infection with B. burgdorferi was detected in 45% of the I. scapularis ticks collected. The model presented here indicates a wide distribution for I. scapularis, with higher probability of occurrence along the Gulf of Mexico coast. Results of the modeling approach applied predict that habitat suitable for the distribution of I. scapularis in the Texas-Mexico transboundary region will remain relatively stable until 2050.

Conclusions

The Texas-Mexico transboundary region appears to be part of a continuum in the pathogenic landscape of LD. Forecasting based on climate trends provides a tool to adapt strategies in the near future to mitigate the impact of LD related to its distribution and risk for transmission to human populations in the Mexico-US transboundary region.

【 授权许可】

   
2014 Feria-Arroyo et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140708102959429.pdf 1513KB PDF download
Figure 6. 71KB Image download
Figure 5. 214KB Image download
Figure 4. 128KB Image download
Figure 3. 65KB Image download
Figure 2. 72KB Image download
Figure 1. 88KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Parola P, Raoult D: Ticks and tickborne bacterial diseases in humans: an emerging infectious threat. Clin Infect Dis 2001, 32(6):897-928.
  • [2]Stanek G, Reiter M: The expanding Lyme Borrelia complex–clinical significance of genomic species? Clin Microbiol Infect 2011, 17(4):487-493.
  • [3]Stanek G, Wormser GP, Gray J, Strle F: Lyme borreliosis. Lancet 2012, 379(9814):461-473.
  • [4]Margos G, Vollmer SA, Ogden NH, Fish D: Population genetics, taxonomy, phylogeny and evolution of Borrelia burgdorferi sensu lato. Infect Gen Evol 2011, 11(7):1545-1563.
  • [5]Rudenko N, Golovchenko M, Grubhoffer L, Oliver JH Jr: Updates on Borrelia burgdorferi sensu lato complex with respect to public health. Ticks Tick Borne Dis 2011, 2(3):123-128.
  • [6]Siembieda JL, Kock RA, McCracken TA, Newman SH: The role of wildlife in transboundary animal diseases. Anim Health Res Rev 2011, 12(1):95-111.
  • [7]Dubrey SW, Bhatia A, Woodham S, Rakowicz W: Lyme disease in the United Kingdom. Postgrad Med J 2014, 90(1059):33-42.
  • [8]CDC: Notice to readers: final 2012 reports of nationally notifiable infectious diseases. MMWR Morb Mort Wky Rep 2013, 62(33):669-682.
  • [9]Kuehn BM: CDC estimates 300,000 US cases of Lyme disease annually. JAMA 2013, 310(11):1110.
  • [10]Mannelli A, Bertolotti L, Gern L, Gray J: Ecology of Borrelia burgdorferi sensu lato in Europe: transmission dynamics in multi-host systems, influence of molecular processes and effects of climate change. FEMS Microbiol Rev 2012, 36(4):837-861.
  • [11]Radolf JD, Caimano MJ, Stevenson B, Hu LT: Of ticks, mice and men: understanding the dual-host lifestyle of Lyme disease spirochaetes. Nat Rev Microbiol 2012, 10(2):87-99.
  • [12]Jaulhac B, Heller R, Limbach FX, Hansmann Y, Lipsker D, Monteil H, Sibilia J, Piemont Y: Direct molecular typing of Borrelia burgdorferi sensu lato species in synovial samples from patients with lyme arthritis. J Clin Microbiol 2000, 38(5):1895-1900.
  • [13]Williamson PC, Billingsley PM, Teltow GJ, Seals JP, Turnbough MA, Atkinson SF: Borrelia, Ehrlichia, and Rickettsia spp. in ticks removed from persons, Texas, USA. Emerg Infect Dis 2010, 16(3):441-446.
  • [14]Gordillo-Perez G, Torres J, Solorzano-Santos F, de Martino S, Lipsker D, Velazquez E, Ramon G, Onofre M, Jaulhac B: Borrelia burgdorferi infection and cutaneous Lyme disease, Mexico. Emerg Infect Dis 2007, 13(10):1556-1558.
  • [15]Gordillo G, Torres J, Solorzano F, Cedillo-Rivera R, Tapia-Conyer R, Munoz O: Serologic evidences suggesting the presence of Borrelia burgdorferi infection in Mexico. Arch Med Res 1999, 30(1):64-68.
  • [16]Gordillo-Perez G, Torres J, Solorzano-Santos F, Garduno-Bautista V, Tapia-Conyer R, Munoz O: Seroepidemiologic study of Lyme’s borreliosis in Mexico City and the northeast of the Mexican Republic. Salud Publica Mex 2003, 45(5):351-355.
  • [17]Gordillo-Perez G, Vargas M, Solorzano-Santos F, Rivera A, Polaco OJ, Alvarado L, Munoz O, Torres J: Demonstration of Borrelia burgdorferi sensu stricto infection in ticks from the northeast of Mexico. Clin Microbiol Infect 2009, 15(5):496-498.
  • [18]Ostfeld RS: Lyme disease: the ecology of a complex system. New York: Oxford University Press; 2011.
  • [19]Hoen AG, Margos G, Bent SJ, Diuk-Wasser MA, Barbour A, Kurtenbach K, Fish D: Phylogeography of Borrelia burgdorferi in the eastern United States reflects multiple independent Lyme disease emergence events. Proc Natl Acad Sci U S A 2009, 106(35):15013-15018.
  • [20]Kurtenbach K, Hanincova K, Tsao JI, Margos G, Fish D, Ogden NH: Fundamental processes in the evolutionary ecology of Lyme borreliosis. Nat Rev Microbiol 2006, 4(9):660-669.
  • [21]Kurtenbach K, De Michelis S, Sewell HS, Etti S, Schafer SM, Holmes E, Hails R, Collares-Pereira M, Santos-Reis M, Hanincova K, Labuda M, Bormane A, Donaghy M: The key roles of selection and migration in the ecology of Lyme borreliosis. Int J Med Microbiol 2002, 291(Suppl 33):152-154.
  • [22]Levi T, Kilpatrick AM, Mangel M, Wilmers CC: Deer, predators, and the emergence of Lyme disease. Proc Natl Acad Sci U S A 2012, 109(27):10942-10947.
  • [23]Bunikis J, Garpmo U, Tsao J, Berglund J, Fish D, Barbour AG: Sequence typing reveals extensive strain diversity of the Lyme borreliosis agents Borrelia burgdorferi in North America and Borrelia afzelii in Europe. Microbiol 2004, 150(Pt 6):1741-1755.
  • [24]Tsao JI: Reviewing molecular adaptations of Lyme borreliosis spirochetes in the context of reproductive fitness in natural transmission cycles. Vet Res 2009, 40(2):36.
  • [25]LoGiudice K, Duerr ST, Newhouse MJ, Schmidt KA, Killilea ME, Ostfeld RS: Impact of host community composition on Lyme disease risk. Ecology 2008, 89(10):2841-2849.
  • [26]LoGiudice K, Ostfeld RS, Schmidt KA, Keesing F: The ecology of infectious disease: effects of host diversity and community composition on Lyme disease risk. Proc Natl Acad Sci U S A 2003, 100(2):567-571.
  • [27]Rosen ME, Hamer SA, Gerhardt RR, Jones CJ, Muller LI, Scott MC, Hickling GJ: Borrelia burgdorferi not detected in widespread Ixodes scapularis (Acari: Ixodidae) collected from white-tailed deer in Tennessee. J Med Entomol 2012, 49(6):1473-1480.
  • [28]Ogden NH, Tsao JI: Biodiversity and Lyme disease: dilution or amplification? Epidemics 2009, 1(3):196-206.
  • [29]Kurtenbach K, Sewell HS, Ogden NH, Randolph SE, Nuttall PA: Serum complement sensitivity as a key factor in Lyme disease ecology. Infect Immun 1998, 66(3):1248-1251.
  • [30]Brisson D, Brinkley C, Humphrey PT, Kemps BD, Ostfeld RS: It takes a community to raise the prevalence of a zoonotic pathogen. Interdiscip Perspect Infect Dis 2011. doi:10.1155/2011/741406
  • [31]Brisson D, Dykhuizen DE, Ostfeld RS: Conspicuous impacts of inconspicuous hosts on the Lyme disease epidemic. Proc Biol Sci 2008, 275(1631):227-235.
  • [32]Brisson D, Vandermause MF, Meece JK, Reed KD, Dykhuizen DE: Evolution of northeastern and midwestern Borrelia burgdorferi, United States. Emerg Infect Dis 2010, 16(6):911-917.
  • [33]Ogden NH, Bigras-Poulin M, Hanincová K, Maarouf A, O’Callaghan CJ, Kurtenbach K: Projected effects of climate change on tick phenology and fitness of pathogens transmitted by the North American tick Ixodes scapularis. J Theor Biol 2008, 254(3):621-632.
  • [34]Ogden NH, Maarouf A, Barker IK, Bigras-Poulin M, Lindsay LR, Morshed MG, O’Callaghan CJ, Ramay F, Waltner-Toews D, Charron DF: Climate change and the potential for range expansion of the Lyme disease vector Ixodes scapularis in Canada. Int J Parasitol 2006, 36(1):63-70.
  • [35]Ogden NH, Bigras-Poulin M, O’Callaghan CJ, Barker IK, Lindsay LR, Maarouf A, Smoyer-Tomic KE, Waltner-Toews D, Charron D: A dynamic population model to investigate effects of climate on geographic range and seasonality of the tick Ixodes scapularis. Int J Parasitol 2005, 35(4):375-389.
  • [36]Estrada-Peña A, Sánchez N, Estrada-Sánchez A: An assessment of the distribution and spread of the tick Hyalomma marginatum in the Western palearctic under different climate scenarios. Vector Borne Zoonotic Dis 2012, 12(9):758-768.
  • [37]Gray JS, Dautel H, Estrada-Pena A, Kahl O, Lindgren E: Effects of climate change on ticks and tick-borne diseases in Europe. Interdiscip Perspect Infect Dis 2009, 2009:593232.
  • [38]Estrada-Pena A, Horak IG, Petney T: Climate changes and suitability for the ticks Amblyomma hebraeum and Amblyomma variegatum (Ixodidae) in Zimbabwe (1974-1999). Vet Parasitol 2008, 151(2-4):256-267.
  • [39]Margos G, Piesman J, Lane RS, Ogden NH, Sing A, Straubinger RK, Fingerle V: Borrelia kurtenbachii sp. nov.: a widely distributed member of the Borrelia burgdorferi sensu lato species complex in North America. Int J Syst Evol Microbiol 2014, 64(Pt1):128-130.
  • [40]Garza M, Feria ATP, Casillas EA, Sanchez-Cordero V, Rivaldi C-L, Sarkar S: Projected future distributions of vectors of Trypanosoma cruzi in North America under climate change scenarios. PLoS Negl Trop Dis 2014. In Press
  • [41]Sarkar S, Strutz SE, Frank DM, Rivaldi CL, Sissel B, Sanchez-Cordero V: Chagas disease risk in Texas. PLoS Negl Trop Dis 2010., 4(10) doi:10.1371/journal.pntd.0000836
  • [42]Carcavallo RU, Curto De Casas SI: Some health impacts of global warming in South America: vector-borne diseases. J Epidemiol 1996, 6(4):S153-S157.
  • [43]IPCC: Summary for Policymakers. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Edited by Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL. Cambridge, United Kingdom and New York, NY, USA; 2007. http://www.ipcc.ch/publications_and_data/ar4/wg1/en/contents.html webcite
  • [44]Asin S, Catala S: Development of Trypanosoma cruzi in Triatoma infestans: influence of temperature and blood consumption. J Parasitol 1995, 81(1):1-7.
  • [45]Wu X, Duvvuri VR, Lou Y, Ogden NH, Pelcat Y, Wu J: Developing a temperature-driven map of the basic reproductive number of the emerging tick vector of Lyme disease Ixodes scapularis in Canada. J Theor Biol 2013, 319:50-61.
  • [46]Ogden NH, Radojevic M, Wu X, Duvvuri VR, Leighton PA, Wu J: Estimated effects of projected climate change on the basic reproductive number of the Lyme disease vector. Environ Health Perspect 2014. (in Press) doi:10.1289/ehp.1307799
  • [47]Hamer SA, Tsao JI, Walker ED, Hickling GJ: Invasion of the lyme disease vector Ixodes scapularis: implications for Borrelia burgdorferi endemicity. EcoHealth 2010, 7(1):47-63.
  • [48]Patz JA, Graczyk TK, Geller N, Vittor AY: Effects of environmental change on emerging parasitic diseases. Int J Parasitol 2000, 30(12-13):1395-1405.
  • [49]Mantovani E, Costa IP, Gauditano G, Bonoldi VL, Higuchi ML, Yoshinari NH: Description of Lyme disease-like syndrome in Brazil: is it a new tick borne disease or Lyme disease variation? Braz J Med Biol Res 2007, 40(4):443-456.
  • [50]Aviña A, CTiwari C, Williamson P, Oppong J, Atkinson S: A Spatially Explicit Environmental Health Surveillance Framework for tick-borne diseases. In Geospatial Analysis of Environmental Health. Edited by Maantay JA, McLalterty S. Springer; 2011:357-371. [Chapter 18, Volume 4]
  • [51]Hamer SA, Hickling GJ, Sidge JL, Rosen ME, Walker ED, Tsao JI: Diverse Borrelia burgdorferi strains in a bird-tick cryptic cycle. Appl Environ Microb 2011, 77(6):1999-2007.
  • [52]Rawlings JA: Lyme disease in Texas. Zentralblatt fur Bakteriologie, Mikrobiologie, und Hygiene Series A, Medical microbiology, infectious diseases, virology, parasitology 1987, 263(3):483-487.
  • [53]Rawlings JA, Fournier PV, Teltow GJ: Isolation of Borrelia spirochetes from patients in Texas. J Clin Microbiol 1987, 25(7):1148-1150.
  • [54]Rawlings JA, Teltow GJ: Prevalence of Borrelia (Spirochaetaceae) spirochetes in Texas ticks. J Med Entomol 1994, 31(2):297-301.
  • [55]Teltow GJ, Fournier PV, Rawlings JA: Isolation of Borrelia burgdorferi from arthropods collected in Texas. Am J Trop Med Hyg 1991, 44(5):469-474.
  • [56]Diuk-Wasser MA, Hoen AG, Cislo P, Brinkerhoff R, Hamer SA, Rowland M, Cortinas R, Vourc’h G, Melton F, Hickling GJ, Tsao JI, Bunikis J, Barbour AG, Kitron U, Piesman J, Fish D: Human risk of infection with Borrelia burgdorferi, the Lyme disease agent, in eastern United States. Am J Trop Med Hyg 2012, 86(2):320-327.
  • [57]Pepin KM, Eisen RJ, Mead PS, Piesman J, Fish D, Hoen AG, Barbour AG, Hamer S, Diuk-Wasser MA: Geographic variation in the relationship between human Lyme disease incidence and density of infected host-seeking Ixodes scapularis nymphs in the Eastern United States. Am J Trop Med Hyg 2012, 86(6):1062-1071.
  • [58]Gordillo-Pérez G, Torres J, Solórzano-Santos F, Garduño-Bautista V, Tapia-Conyer R, Muñóz O: Estudio seroepidemiológico de Borreliosis de Lyme en la Ciudad de México y el Noreste de la República Mexicana. Salud Pública Mexicana 2003, 45:351-355.
  • [59]Gordillo-Pérez G, Vargas-Sandoval M, Sosa-Gutierrez C, Minero-Gonzalez E, Schoeder-Lima E, Parra-Montiel G, Guzmán-Cornejo C, Sánchez-Cordero V, Torres J: Prevalencia de Infección de Borrelia burgdorferi y Ehrlichia spp en garrapatas y roedores provenientes de tres parques nacionales del Centro de la República Mexicana. Acarologia Latinoamerica 2012, 1:291-295.
  • [60]Martinez A, Salinas A, Martinez F, Cantu A, Miller DK: Serosurvey for selected disease agents in white-tailed deer from Mexico. J Wildl Dis 1999, 35(4):799-803.
  • [61]Illoldi-Rangel P, Rivaldi CL, Sissel B, Trout Fryxell R, Gordillo-Perez G, Rodriguez-Moreno A, Williamson P, Montiel-Parra G, Sanchez-Cordero V, Sarkar S: Species distribution models and ecological suitability analysis for potential tick vectors of Lyme disease in Mexico. J Trop Med 2012, 2012:959101.
  • [62]Gordillo-Pérez MG, Solórzano-Santos F: Enfermedad de Lyme: experiencia en niños mexicanos. Boletin Médico del Hospital Infantil de México 2010, 67:164-176.
  • [63]Bosch J, Munoz MJ, Martinez M, de la Torre A, Estrada-Pena A: Vector-borne pathogen spread through ticks on migratory birds: a probabilistic spatial risk model for South-Western europe. Transbound Emerg Dis 2013, 60(5):403-415.
  • [64]Cartín-Rojas A: Transboundary Animal Diseases and International Trade. In International Trade from Economic and Policy Perspective. Edited by Bobem V. InTech; 2012:143-166. [Chapter 7] doi:10.5772/48151
  • [65]Piesman J, Eisen L: Prevention of tick-borne diseases. Annu Rev Entomol 2008, 53:323-343.
  • [66]Porretta D, Mastrantonio V, Amendolia S, Gaiarsa S, Epis S, Genchi C, Bandi C, Otranto D, Urbanelli S: Effects of global changes on the climatic niche of the tick Ixodes ricinus inferred by species distribution modelling. Parasit Vectors 2013, 6:271. BioMed Central Full Text
  • [67]Rubel F, Kottek M: Observed and projected climate shifts 1901-2100 depicted by world maps of the Köppen-Geiger climate classification. Meteorol Z 2010, 19(2):135-141.
  • [68]KOTTEK M, GRIESER J, BECK C, RUDOLF B, RUBEL F: World Map of the Köppen-Geiger climate classification updated. Meteorol Z 2006, 15(3):259-263.
  • [69]Correll DS, Johnston MC: Manual of the vascular plants of Texas. Renner: Texas Research Foundation; 1970.
  • [70]Archer S, Scifres CJ, Bassham CR, Maggio R: Autogenic succession in a subtropical savanna: conversion of grassland to thornwood land. Ecol Monogr 1988, 58(2):111-127.
  • [71]de Leon AA P, Teel PD, Auclair AN, Messenger MT, Guerrero FD, Schuster G, Miller RJ: Integrated strategy for sustainable cattle fever tick eradication in USA is required to mitigate the impact of global change. Front Physiol 2012, 3:195.
  • [72]CONABIO: Actividades económicas en México por municipio, 2010’, escala: 1:250000. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. Edited by Datos estadísticos del 2010 dINdEyGI. México D.F; 2012.
  • [73]Billings AN, Rawlings JA, Walker DH: Tick-borne diseases in Texas: a 10-year retrospective examination of cases. Texas Med 1998, 94(12):66-76.
  • [74]Keirans JE, Clifford CM: The genus Ixodes in the United States: a scanning electron microscope study and key to the adults. J Med Entomol Suppl 1978, 2:1-149.
  • [75]Keirans JE, Durden LA: Illustrated key to nymphs of the tick genus Amblyomma (Acari: Ixodidae) found in the United States. J Med Entomol 1998, 35(4):489-495.
  • [76]Keirans JE, Litwak TR: Pictorial key to the adults of hard ticks, family Ixodidae (Ixodida: Ixodoidea), east of the Mississippi River. J Med Entomol 1989, 26(5):435-448.
  • [77]United States. Animal and Plant Health Inspection Service. Veterinary Services, Strickland RK, Diamant G: Ticks of veterinary importance. Washington: Animal and Plant Health Inspection Service, U.S. Dept. of Agriculture: for sale by the Supt. of Docs., U.S. Govt. Print. Off; 1976.
  • [78]Vargas M, Gordillo-Pérez G, Solórzano S, Rivera A, Polaco O, Muñoz O, Torres J: Evidences of Borrelia burgdorferi in ticks of the Northeast of Mexico. Entomologia Mexicana 2007, 6:830-835.
  • [79]Almazan C, Castro-Arellano I, Camacho-Puga E: Black-Legged ticks (Ixodes scapularis) on the jaguar (Panthera onca). Southwest Nat 2013, 58(1):126-127.
  • [80]Dennis DT, Nekomoto TS, Victor JC, Paul WS, Piesman J: Reported distribution of Ixodes scapularis and Ixodes pacificus (Acari: Ixodidae) in the United States. J Med Entomol 1998, 35(5):629-638.
  • [81]Diuk-Wasser MA, Brown HE, Andreadis TG, Fish D: Modeling the spatial distribution of mosquito vectors for West Nile virus in Connecticut. USA Vector Borne Zoonotic Dis 2006, 6(3):283-295.
  • [82]Diuk-Wasser MA, Vourc’h G, Cislo P, Hoen AG, Melton F, Hamer SA, Rowland M, Cortinas R, Hickling GJ, Tsao JI, Barbour AG, Kilton U, Piesman J, Fish D: Field and climate-based model for predicting the density of host-seeking nymphal Ixodes scapularis, an important vector of tick-borne disease agents in the eastern United States. Global Ecol Biogeogr 2010, 19(4):504-514.
  • [83]Phillips SJ: Transferability, sample selection bias and background data in presence-only modelling: a response to Peterson et al. (2007). Ecography 2008, 31(2):272-278.
  • [84]Phillips SJ, Dudik M: Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 2008, 31(2):161-175.
  • [85]Elith J, Phillips SJ, Hastie T, Dudik M, Chee YE, Yates CJ: A statistical explanation of MaxEnt for ecologists. Divers Distrib 2011, 17(1):43-57.
  • [86]Phillips SJ, Anderson RP, Schapire RE: Maximum entropy modeling of species geographic distributions. Ecol Model 2006, 190(3-4):231-259.
  • [87]Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GVN, Underwood EC, D’Amico JA, Itoua I, Strand HE, Morrison JC, Loucks CJ, Allnutt TF, Ricketts TH, Kura Y, Lamoreux JF, Wettengel WW, Hedao P, Kassem KR: Terrestrial ecoregions of the worlds: a new map of life on Earth. Bioscience 2001, 51(11):933-938.
  • [88]Fielding HA, Bell JF: A review of methods for the assessment of predictions errors in conservation presence/absence models. Environ Conserv 1998, 24:38-49.
  • [89]Brownstein JS, Holford TR, Fish D: A climate-based model predicts the spatial distribution of the Lyme disease vector Ixodes scapularis in the United States. Environ Health Perspect 2003, 111(9):1152-1157.
  • [90]Dantas-Torres F, Chomel BB, Otranto D: Ticks and tick-borne diseases: a one health perspective. Trends Parasitol 2012, 28(10):437-446.
  • [91]Hotez PJ, Gurwith M: Europe’s neglected infections of poverty. Int J Infect Dis 2011, 15(9):e611-e619.
  • [92]Hotez PJ: Fighting neglected tropical diseases in the southern United States. BMJ 2012, 345:e6112.
  • [93]Andrus J, Bottazzi ME, Chow J, Goraleski KA, Fisher-Hoch SP, Lambuth JK, Lee BY, Margolis HS, McCormick JB, Melby P, Murray KO, Rico-Hesser R, Valenzuela JG, Hotez PJ: Ears of the Armadillo: global health research and neglected diseases in Texas. PLoS Negl Trop Dis 2013, 7(6):e2021.
  • [94]Escalante T, Rodríguez-Tapia G, Szumik C, Morrone JJ, Rivas M: Delimitation of the Nearctic region according to mammalian distributional patterns. J Mammal 2010, 91(6):1381-1388.
  • [95]Killilea ME, Swei A, Lane RS, Briggs CJ, Ostfeld RS: Spatial dynamics of lyme disease: a review. EcoHealth 2008, 5(2):167-195.
  • [96]Gatewood AG, Liebman KA, Vourc’h G, Bunikis J, Hamer SA, Cortinas R, Melton F, Cislo P, Kitron U, Tsao J, Barbour AG, Fish D, Diuk-Wasser MA: Climate and tick seasonality are predictors of Borrelia burgdorferi genotype distribution. Appl Environ Microbiol 2009, 75(8):2476-2483.
  • [97]Rydzewski J, Mateus-Pinilla N, Warner RE, Hamer S, Weng HY: Ixodes scapularis and Borrelia burgdorferi among diverse habitats within a natural area in east-central Illinois. Vector Borne Zoonotic Dis 2011, 11(10):1351-1358.
  • [98]Hamer SA, Hickling GJ, Sidge JL, Walker ED, Tsao JI: Synchronous phenology of juvenile Ixodes scapularis, vertebrate host relationships, and associated patterns of Borrelia burgdorferi ribotypes in the midwestern United States. Ticks Tick Borne Dis 2012, 3(2):65-74.
  • [99]Reed KD, Meece JK, Henkel JS, Shukla SK: Birds, migration and emerging zoonoses: west nile virus, lyme disease, influenza A and enteropathogens. Clinl Med Res 2003, 1(1):5-12.
  • [100]Clark KL, Leydet B, Hartman S: Lyme Borreliosis in human patients in Florida and Georgia, USA. Int J Med Sci 2013, 10(7):915-931.
  • [101]Brownstein JS, Holford TR, Fish D: Effect of climate change on Lyme disease risk in North America. EcoHealth 2005, 2(1):38-46.
  • [102]Pulliam H: On the relationship between niche and distribution. Ecol Lett 2000, 3:349-361.
  • [103]Soberón J, Peterson AT: Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodivers Informatics 2005, 2:1-10.
  • [104]Brown JH, Stevens GC, Kaufman DM: The geographic range: size, shape, boundaries, and internal structure. Annu Rev Ecol Syst 1996, 27:597-623.
  • [105]Austin MP: Spatial prediction of species distribution: an interface between ecological theory and statistical modelling. Ecol Model 2002, 157:101-118.
  • [106]Diuk-Wasser MA, Gatewood AG, Cortinas MR, Yaremych-Hamer S, Tsao J, Kitron U, Hickling G, Brownstein JS, Walker E, Piesman J, Fish D: Spatiotemporal patterns of host-seeking Ixodes scapularis nymphs (Acari: Ixodidae) in the United States. J Med Entomol 2006, 43(2):166-176.
  • [107]Salinas-Melendez JA, Avalos-Ramirez R, Riojas-Valdez VM, Martinez-Munoz A: Serological survey of canine borreliosis. Rev Latinoam Microbiol 1999, 41(1):1-3.
  • [108]Bowman D, Little SE, Lorentzen L, Shields J, Sullivan MP, Carlin EP: Prevalence and geographic distribution of Dirofilaria immitis, Borrelia burgdorferi, Ehrlichia canis, and Anaplasma phagocytophilum in dogs in the United States: results of a national clinic-based serologic survey. Vet Parasitol 2009, 160(1–2):138-148.
  • [109]Salinas-Melendez JA, Zarate-Ramos JJ, Avalos-Ramirez R, Hernandez-Escareno JJ, Guzman-Acosta G, Riojas-Valdes VM, Segura-Correa JC: Prevalence of Antibodies Against Borrelia burgdorferi in Dogs from Monterrey, Mexico. J Anim Vet Adv 2011, 10(20):2720-2723.
  • [110]Healy JA, Cross TF, Healy A: The alpha-Gpdh polymorphism in the tick Ixodes ricinus: similar diurnal trends in genotypic composition in Irish and Swedish population samples. Exp Appl Acarol 2004, 32(1-2):111-118.
  • [111]Radulovic Z, Milutinovic M, Tomanovic S, Mihaljica D, Cakic S, Stamenkovic-Radak M, Andelkovic M: Seasonal and spatial occurrence of glycerol-3-phosphate dehydrogenase variability in Ixodes ricinus (Acari: Ixodidae) populations. J Med Entomol 2012, 49(3):497-503.
  • [112]Radulovic Z, Milutinovic M, Andelkovic M, Vujcic Z, Tomanovic S, Bozic N, Marinkovic D: Allozyme polymorphism of Mdh and alpha-Gpdh in Ixodes ricinus populations: comparison of borreliae-infected and uninfected ticks. Exp Appl Acarol 2006, 40(2):113-121.
  • [113]Schulze TL, Jordan RA, Hung RW, Schulze CJ: Effectiveness of the 4-Poster passive topical treatment device in the control of Ixodes scapularis and Amblyomma americanum (Acari: Ixodidae) in New Jersey. Vector Borne Zoonotic Dis 2009, 9(4):389-400.
  • [114]Wilson DE, Ruff S: The Smithsonian Book of North American mammals. Washington: Smithsonian Institution Press; 1999.
  • [115]Anderson JF, Magnarelli LA: Biology of ticks. Infect Dis Clin North Am 2008, 22(2):195-215. v
  • [116]Kempf F, Boulinier T, De Meeus T, Arnathau C, McCoy KD: Recent evolution of host-associated divergence in the seabird tick Ixodes uriae. Mol Ecol 2009, 18(21):4450-4462.
  • [117]Kempf F, De Meeus T, Vaumourin E, Noel V, Taragel’ova V, Plantard O, Heylen DJ, Eraud C, Chevillon C, McCoy KD: Host races in Ixodes ricinus, the European vector of Lyme borreliosis. Infect Gen Evol 2011, 11(8):2043-2048.
  • [118]Dietrich M, Beati L, Elguero E, Boulinier T, McCoy KD: Body size and shape evolution in host races of the tick Ixodes uriae. Biol J Linn Soc 2013, 108:323-334.
  文献评价指标  
  下载次数:28次 浏览次数:7次