期刊论文详细信息
Molecular Neurodegeneration
Amyloid beta protein-induced zinc sequestration leads to synaptic loss via dysregulation of the ProSAP2/Shank3 scaffold
Tobias M Boeckers2  Craig C Garner3  Joseph D Buxbaum1  Patrick R Hof5  Katrin I Andreasson4  Nathaniel S Woodling4  Michael Schoen2  Magali Arons3  Patrick T Udvardi2  Michael J Schmeisser2  Andreas M Grabrucker3 
[1] Department of Genetics and Genomic Science, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA;Institute for Anatomy and Cell Biology, Ulm University, Albert Einstein Allee 11, Ulm, 89081, Germany;Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine, Stanford University, 1201 Welch Road, Stanford, CA 94305-5485, USA;Department of Neurology and Neurological Sciences, Stanford School of Medicine, Stanford University, 300 Pasteur Drive, Stanford, CA94305 USA;Friedman Brain Institute, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA
关键词: synapse;    Hippocampus;    Zn2+;    Oligomers;    Amyloid;    Shank1;    Shank3;    ProSAP2;    Alzheimer's disease;    PSD;   
Others  :  865606
DOI  :  10.1186/1750-1326-6-65
 received in 2011-05-13, accepted in 2011-09-22,  发布年份 2011
PDF
【 摘 要 】

Background

Memory deficits in Alzheimer's disease (AD) manifest together with the loss of synapses caused by the disruption of the postsynaptic density (PSD), a network of scaffold proteins located in dendritic spines. However, the underlying molecular mechanisms remain elusive. Since it was shown that ProSAP2/Shank3 scaffold assembly within the PSD is Zn2+-dependent and that the amyloid beta protein (Aβ) is able to bind Zn2+, we hypothesize that sequestration of Zn2+ ions by Aβ contributes to ProSAP/Shank platform malformation.

Results

To test this hypothesis, we designed multiple in vitro and in vivo assays demonstrating ProSAP/Shank dysregulation in rat hippocampal cultures following Aβ oligomer accumulation. These changes were independent from alterations on ProSAP/Shank transcriptional level. However, application of soluble Aβ prevented association of Zn2+ ions with ProSAP2/Shank3 in a cell-based assay and decreased the concentration of Zn2+ clusters within dendrites. Zn2+ supplementation or saturation of Aβ with Zn2+ ions prior to cell treatment was able to counter the effects induced by Aβ on synapse density and ProSAP2/Shank3 levels at the PSD. Interestingly, intracellular Zn2+ levels in APP-PS1 mice and human AD hippocampus are reduced along with a reduction in synapse density and synaptic ProSAP2/Shank3 and Shank1 protein levels.

Conclusions

We conclude that sequestration of Zn2+ ions by Aβ significantly contributes to changes in ProSAP2/Shank3 platforms. These changes in turn lead to less consolidated (mature) synapses reflected by a decrease in Shank1 protein levels at the PSD and decreased synapse density in hippocampal neurons.

【 授权许可】

   
2011 Grabrucker et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140726083352285.pdf 9672KB PDF download
109KB Image download
74KB Image download
133KB Image download
87KB Image download
90KB Image download
107KB Image download
39KB Image download
112KB Image download
【 图 表 】

【 参考文献 】
  • [1]Hamos JE, DeGennaro LJ, Drachman D: Synaptic loss in Alzheimer's disease and other dementias. Neurology 1989, 39(3):355-361.
  • [2]Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R, Hansen LA, Katzman R: Physical basis of cognitive alterations in Alzheimer's disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 1991, 30:572-580.
  • [3]DeKosky ST, Scheff SW, Styren SD: Structural correlates of cognition in dementia: quantification and assessment of synapse change. Neurodegeneration 1996, 5:417-421.
  • [4]Selkoe D: Amyloid β protein precursor and the pathogenesis of Alzheimer's disease. Cell 1989, 58:611-612.
  • [5]Selkoe D: Physiological production of the β-amyloid protein and the mechanisms of Alzheimer's disease. Trends Neurosci 1993, 16:403-409.
  • [6]Sisodia SS, Price DL: Role of the beta-amyloid protein in Alzheimer's disease. FASEB J 1995, 9:366-370.
  • [7]Pham E, Crews L, Ubhi K, Hansen L, Adame A, Cartier A, Salmon D, Galasko D, Michael S, Savas JN, Yates JR, Glabe C, Masliah E: Progressive accumulation of amyloid-beta oligomers in Alzheimer's disease and in amyloid precursor protein transgenic mice is accompanied by selective alterations in synaptic scaffold proteins. FEBS J 2010, 277:3051-3067.
  • [8]Grabrucker AM, Schmeisser MJ, Schoen M, Boeckers TM: Postsynaptic ProSAP/Shank scaffolds in the cross-hair of synaptopathies. Trends Cell Biol 2011, in press.
  • [9]Durand CM, Betancur C, Boeckers TM, Bockmann J, Chaste P, Fauchereau F, Nygren G, Rastam M, Gillberg IC, Anckarsäter H, Sponheim E, Goubran-Botros H, Delorme R, Chabane N, Mouren-Simeoni MC, de Mas P, Bieth E, Rogé B, Héron D, Burglen L, Gillberg C, Leboyer M, Bourgeron T: Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nat Genet 2007, 39(1):25-27.
  • [10]Moessner R, Marshall CR, Sutcliffe JS, Skaug J, Pinto D, Vincent J, Zwaigenbaum L, Fernandez B, Roberts W, Szatmari P, Scherer SW: Contribution of SHANK3 mutations to autism spectrum disorder. Am J Hum Genet 2007, 81(6):1289-1297.
  • [11]Gauthier J, Champagne N, Lafrenière RG, Xiong L, Spiegelman D, Brustein E, Lapointe M, Peng H, Côté M, Noreau A, Hamdan FF, Addington AM, Rapoport JL, Delisi LE, Krebs MO, Joober R, Fathalli F, Mouaffak F, Haghighi AP, Néri C, Dubé MP, Samuels ME, Marineau C, Stone EA, Awadalla P, Barker PA, Carbonetto S, Drapeau P, Rouleau GA: De novo mutations in the gene encoding the synaptic scaffolding protein SHANK3 in patients ascertained for schizophrenia. Proc Natl Acad Sci USA 2010, 107(17):7863-7868.
  • [12]Gong Y, Lippa CF, Zhu J, Lin Q, Rosso AL: Disruption of glutamate receptors at Shank-postsynaptic platform in Alzheimer's disease. Brain research 2009, 1292:191-198.
  • [13]Roselli F, Hutzler P, Wegerich Y, Livrea P, Almeida OF: Disassembly of shank and homer synaptic clusters is driven by soluble beta-amyloid(1-40) through divergent NMDAR-dependent signalling pathways. PLoS one 2009, 4(6):6011.
  • [14]Roselli F, Tirard M, Lu J, Hutzler P, Lamberti P, Livrea P, Morabito M, Almeida OF: Soluble beta-amyloid1-40 induces NMDA-dependent degradation of postsynaptic density-95 at glutamatergic synapses. J Neurosci 2005, 25(48):11061-11070.
  • [15]Roselli F, Livrea P, Almeida OF: CDK5 is essential for soluble amyloid β-induced degradation of GKAP and remodeling of the synaptic actin cytoskeleton. PLoS one 2011, 6(7):23097.
  • [16]Baron MK, Boeckers TM, Vaida B, Faham S, Gingery M, Sawaya MR, Salyer D, Gundelfinger ED, Bowie JU: An architectural framework that may lie at the core of the postsynaptic density. Science 2006, 311(5760):531-535.
  • [17]Grabrucker AM, Knight MJ, Proepper C, Bockmann J, Joubert M, Rowan M, Nienhaus GU, Garner CC, Bowie JU, Kreutz MR, Gundelfinger ED, Boeckers TM: Concerted action of zinc and ProSAP/Shank in synaptogenesis and synapse maturation. EMBO J 2011, 30(3):569-581.
  • [18]Gundelfinger ED, Boeckers TM, Baron MK, Bowie JU: A role for zinc in postsynaptic density asSAMbly and plasticity? Trends Biochem Sci 2006, 31(7):366-373.
  • [19]Frederickson CJ, Bush AI: Synaptically released zinc: physiological functions and pathological effects. Biometals 2001, 14(3-4):353-366.
  • [20]Lee JY, Mook-Jung I, Koh JY: Histochemically reactive zinc in plaques of the Swedish mutant beta-amyloid precursor protein transgenic mice. J Neurosci 1999, 19(11):RC10.
  • [21]Lovell MA, Robertson JD, Teesdale WJ, Campbell JL, Markesbery WR: Copper, iron and zinc in Alzheimer's disease senile plaques. J Neurol Sci 1998, 158(1):47-52.
  • [22]Suh SW, Jensen KB, Jensen MS, Silva DS, Kesslak PJ, Danscher G, Frederickson CJ: Histochemically-reactive zinc in amyloid plaques, angiopathy, and degenerating neurons of Alzheimer's diseased brains. Brain Res 2000, 852(2):274-278.
  • [23]Atwood CS, Scarpa RC, Huang X, Moir RD, Jones WD, Fairlie DP, Tanzi RE, Bush AI: Characterization of copper interactions with alzheimer amyloid beta peptides: identification of an attomolar-affinity copper binding site on amyloid beta1-42. J Neurochem 2000, 75(3):1219-1233.
  • [24]Bush AI, Pettingell WH, Multhaup G, d. Paradis M, Vonsattel JP, Gusella JF, Beyreuther K, Masters CL, Tanzi RE: Rapid induction of Alzheimer Abeta amyloid formation by zinc. Science 1994, 265(5177):1464-1467.
  • [25]Miller Y, Ma B, Nussinov R: Zinc ions promote Alzheimer Abeta aggregation via population shift of polymorphic states. Proc Natl Acad Sci USA 2010, 107(21):9490-9495.
  • [26]Boeckers TM, Kreutz MR, Winter C, Zuschratter W, Smalla KH, Sanmarti-Vila L, Wex H, Langnaese K, Bockmann J, Garner CC, Gundelfinger ED: Proline-rich synapse-associated protein-1/cortactin binding protein 1 (ProSAP1/CortBP1) is a PDZ-domain protein highly enriched in the postsynaptic density. J Neurosci 1999, 19(15):6506-6518.
  • [27]Sala C, Piëch V, Wilson NR, Passafaro M, Liu G, Sheng M: Regulation of dendritic spine morphology and synaptic function by Shank and Homer. Neuron 2001, 31(1):115-130.
  • [28]Coyle P, Zalewski PD, Philcox JC, Forbes IJ, Ward AD, Lincoln SF, Mahadevan I, Rofe AM: Measurement of zinc in hepatocytes by using a fluorescent probe, zinquin: relationship to metallothionein and intracellular zinc. Biochem J 1994, 303(3):781-786.
  • [29]Yang DS, McLaurin J, Qin K, Westaway D, Fraser PE: Examining the zinc binding site of the amyloid-beta peptide. Eur J Biochem 2000, 267(22):6692-6698.
  • [30]Talmard C, Bouzan A, Faller P: Zinc binding to amyloid-beta: isothermal titration calorimetry and Zn competition experiments with Zn sensors. Biochemistry 2007, 46(47):13658-13666.
  • [31]Danielsson J, Pierattelli R, Banci L, Gräslund A: High-resolution NMR studies of the zinc-binding site of the Alzheimer's amyloid beta-peptide. FEBS J 2007, 274(1):46-59.
  • [32]Lacor PN, Buniel MC, Furlow PW, Clemente AS, Velasco PT, Wood M, Viola KL, Klein WL: Abeta oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer's disease. J Neurosci 2007, 27:796-807.
  • [33]Kodali R, Williams AD, Chemuru S, Wetzel R: Abeta(1-40) forms five distinct amyloid structures whose beta-sheet contents and fibril stabilities are correlated. J Mol Biol 2010, 401(3):503-517.
  • [34]Selkoe DJ: Soluble oligomers of the amyloid beta-protein impair synaptic plasticity and behavior. Behav Brain Res 2008, 192:106-113.
  • [35]Lambert MP, Barlow AK, Chromy BA, Edwards C, Freed R, Liosatos M, Morgan TE, Rozovsky I, Trommer B, Viola KL, Wals P, Zhang C, Finch CE, Krafft GA, Klein WL: Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins. Proc Natl Acad Sci USA 1998, 95:6448-6453.
  • [36]Klein WL, Krafft GA, Finch CE: Targeting small Abeta oligomers: the solution to an Alzheimer's disease conundrum? Trends Neurosci 2001, 24:219-224.
  • [37]Walsh DM, Selkoe DJ: Oligomers on the brain: the emerging role of soluble protein aggregates in neurodegeneration. Protein Pept Lett 2004, 11:213-228.
  • [38]Klyubin I, Betts V, Welzel AT, Blennow K, Zetterberg H, Wallin A, Lemere CA, Cullen WK, Peng Y, Wisniewski T, Selkoe DJ, Anwyl R, Walsh DM, Rowan MJ: Amyloid beta protein dimer-containing human CSF disrupts synaptic plasticity: prevention by systemic passive immunization. J Neurosci 2008, 28:4231-4237.
  • [39]Bush AI, Pettingell WH, Paradis MD, Tanzi RE: Modulation of Abeta adhesiveness and secretase site cleavage by zinc. J Biol Chem 1994, 269(16):12152-12158.
  • [40]Matsubara T, Hiura Y, Kawahito O, Yasuzawa M, Kawashiro K: Selection of novel structural zinc sites from a random peptide library. FEBS Lett 2003, 555(2):317-321.
  • [41]Adlard PA, Parncutt JM, Finkelstein DI, Bush AI: Cognitive loss in zinc transporter-3 knock-out mice: a phenocopy for the synaptic and memory deficits of Alzheimer's disease? J Neurosci 2010, 30(5):1631-1636.
  • [42]Cole TB, Wenzel HJ, Kafer KE, Schwartzkroin PA, Palmiter RD: Elimination of zinc from synaptic vesicles in the intact mouse brain by disruption of the ZnT3 gene. Proc Natl Acad Sci USA 1999, 96(4):1716-1721.
  • [43]Deshpande A, Kawai H, Metherate R, Glabe CG, Busciglio J: A Role for Synaptic Zinc in Activity-Dependent Aβ Oligomer Formation and Accumulation at Excitatory Synapses. J Neurosci 2009, 29(13):4004-4015.
  • [44]Gylys KH, Fein JA, Yang F, Wiley DJ, Miller CA, Cole GM: Synaptic changes in Alzheimer's disease: increased amyloid-beta and gliosis in surviving terminals is accompanied by decreased PSD-95 fluorescence. Am J Pathol 2004, 165:1809-1817.
  • [45]Koffie RM, Meyer-Luehmann M, Hashimoto T, Adams KW, Mielke ML, Garcia-Alloza M, Micheva KD, Smith SJ, Kim ML, Lee VM, Hyman BT, Spires-Jones TL: Oligomeric amyloid beta associates with postsynaptic densities and correlates with excitatory synapse loss near senile plaques. Proc Natl Acad Sci USA 2009, 106:4012-4017.
  • [46]Sze CI, Troncoso JC, Kawas C, Mouton P, Price DL, Martin LJ: Loss of the presynaptic vesicle protein synaptophysin in hippocampus correlates with cognitive decline in Alzheimer disease. J Neuropathol Exp Neurol 1997, 56(8):933-944.
  • [47]Zhan SS, Beyreuther K, Schmitt HP: Quantitative assessment of the synaptophysin immuno-reactivity of the cortical neuropil in various neurodegenerative disorders with dementia. Dementia 1993, 4(2):66-74.
  • [48]Viola KL, Velasco PT, Klein WL: Why Alzheimer's is a disease of memory: the attack on synapses by A beta oligomers (ADDLs). J Nutr Health Aging 2008, 12:51-57.
  • [49]Kandimalla KK, Scott OG, Fulzele S, Davidson MW, Poduslo JF: Mechanism of neuronal versus endothelial cell uptake of Alzheimer's disease amyloid beta protein. PLoS One 2009, 4(2):e4627.
  • [50]Lai AY, McLaurin J: Mechanisms of amyloid-Beta Peptide uptake by neurons: the role of lipid rafts and lipid raft-associated proteins. Int J Alzheimers Dis 2010, 2011:548380.
  • [51]LaFerla FM, Green KN, Oddo S: Intracellular amyloid-beta in Alzheimer's disease. Nat Rev Neurosci 2007, 8(7):499-509.
  • [52]Mocchegiani E, Malavolta M: Zinc dyshomeostasis, ageing and neurodegeneration: implications of A2M and inflammatory gene polymorphisms. J Alzheimers Dis 2007, 12(1):101-109.
  • [53]Carrasco J, Adlard P, Cotman C, Quintana A, Penkowa M, Xu F, Van Nostrand WE, Hidalgo J: Metallothionein-I and -III expression in animal models of Alzheimer disease. Neuroscience 2006, 143(4):911-922.
  • [54]Lyubartseva G, Smith JL, Markesbery WR, Lovell MA: Alterations of zinc transporter proteins ZnT-1, ZnT-4 and ZnT-6 in preclinical Alzheimer's disease brain. Brain Pathol 2010, 20(2):343-350.
  • [55]Zheng W, Wang T, Yu D, Feng WY, Nie YX, Stoltenberg M, Danscher G, Wang ZY: Elevation of zinc transporter ZnT3 protein in the cerebellar cortex of the AbetaPP/PS1 transgenic mouse. J Alzheimers Dis 2010, 20(1):323-331.
  • [56]Baum L, Chan IH, Cheung SK, Goggins WB, Mok V, Lam L, Leung V, Hui E, Ng C, Woo J, Chiu HF, Zee BC, Cheng W, Chan MH, Szeto S, Lui V, Tsoh J, Bush AI, Lam CW, Kwok T: Serum zinc is decreased in Alzheimer's disease and serum arsenic correlates positively with cognitive ability. Biometals 2010, 23(1):173-179.
  • [57]Corona C, Masciopinto F, Silvestri E, Del Viscovo A, Lattanzio R, Sorda RL, Ciavardelli D, Goglia F, Piantelli M, Canzoniero LM, Sensi SL: Dietary zinc supplementation of 3xTg-AD mice increases BDNF levels and prevents cognitive deficits as well as mitochondrial dysfunction. Cell Death and Disease 2010, 1:1-8.
  • [58]Greenough MA, Volitakis I, Li QX, Laughton K, Evin G, Ho M, Dalziel AH, Camakaris J, Bush AI: Presenilins promote the cellular uptake of copper and zinc and maintain Cu-chaperone of sod1-dependent Cu/Zn superoxide dismutase activity. J Biol Chem 2011, in press.
  • [59]Di Stefano A, Sozio P, Cerasa LS, Iannitelli A, Cataldi A, Zara S, Giorgioni G, Nasuti C: Ibuprofen and lipoic acid diamide as co-drug with neuroprotective activity: pharmacological properties and effects in beta-amyloid (1-40) infused Alzheimer's disease rat model. Int J Immunopathol Pharmacol 2010, 2:589-599.
  • [60]Schmeisser MJ, Grabrucker AM, Bockmann J, Boeckers TM: Synaptic crosstalk betweeen N-methyl-D-aspartate receptors and LAPSER1-beta-catenin at excitatory synapses. J Biol Chem 2009, 284(42):29146-29157.
  文献评价指标  
  下载次数:12次 浏览次数:6次