期刊论文详细信息
Neural Development
Spinal cord regeneration in Xenopus tadpoles proceeds through activation of Sox2-positive cells
Juan Larraín2  Dasfne Lee-Liu2  Esteban G Contreras2  Mauricio Moreno2  Ricardo Tampe2  Natalia Sánchez2  Rosana Muñoz2  Marcia Gaete1 
[1] Faculty of Medicine, Pontificia Universidad Católica de Chile, Alameda, 340, Santiago, Chile;Center for Aging and Regeneration, Millennium Nucleus in Regenerative Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Alameda, 340, Santiago, Chile
关键词: Xenopus;    Sox2;    Spinal cord regeneration;   
Others  :  820316
DOI  :  10.1186/1749-8104-7-13
 received in 2011-12-29, accepted in 2012-04-26,  发布年份 2012
PDF
【 摘 要 】

Background

In contrast to mammals, amphibians, such as adult urodeles (for example, newts) and anuran larvae (for example, Xenopus) can regenerate their spinal cord after injury. However, the cellular and molecular mechanisms involved in this process are still poorly understood.

Results

Here, we report that tail amputation results in a global increase of Sox2 levels and proliferation of Sox2+ cells. Overexpression of a dominant negative form of Sox2 diminished proliferation of spinal cord resident cells affecting tail regeneration after amputation, suggesting that spinal cord regeneration is crucial for the whole process. After spinal cord transection, Sox2+ cells are found in the ablation gap forming aggregates. Furthermore, Sox2 levels correlated with regenerative capabilities during metamorphosis, observing a decrease in Sox2 levels at non-regenerative stages.

Conclusions

Sox2+ cells contribute to the regeneration of spinal cord after tail amputation and transection. Sox2 levels decreases during metamorphosis concomitantly with the lost of regenerative capabilities. Our results lead to a working hypothesis in which spinal cord damage activates proliferation and/or migration of Sox2+ cells, thus allowing regeneration of the spinal cord after tail amputation or reconstitution of the ependymal epithelium after spinal cord transection.

【 授权许可】

   
2012 Gaete et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140712035207717.pdf 5273KB PDF download
Figure 6. 213KB Image download
Figure 5. 120KB Image download
Figure 4. 150KB Image download
Figure 3. 113KB Image download
Figure 2. 70KB Image download
Figure 1. 144KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Thuret S, Moon LD, Gage FH: Therapeutic interventions after spinal cord injury. Nat Rev Neurosci 2006, 7:628-643.
  • [2]Becker CG, Lieberoth BC, Morellini F, Feldner J, Becker T, Schachner M: L1.1 is involved in spinal cord regeneration in adult zebrafish. J Neurosci 2004, 24:7837-7842.
  • [3]Slack JM, Lin G, Chen Y: TheXenopustadpole: a new model for regeneration research. Cell Mol Life Sci 2008, 65:54-63.
  • [4]Tanaka EM, Ferretti P: Considering the evolution of regeneration in the central nervous system. Nat Rev Neurosci 2009, 10:713-723.
  • [5]Tseng AS, Levin M: Tail regeneration inXenopus laevisas a model for understanding tissue repair. J Dent Res 2008, 87:806-816.
  • [6]Ferretti P, Zhang F, O’Neill P: Changes in spinal cord regenerative ability through phylogenesis and development: lessons to be learnt. Dev Dyn 2003, 226:245-256.
  • [7]Filoni S, Bosco L, Cioni C: Reconstitution of the spinal cord after ablation in larvalXenopus laevis. Acta Embryol Morphol Exp 1984, 5:109-129.
  • [8]Chernoff EA, Stocum DL, Nye HL, Cameron JA: Urodele spinal cord regeneration and related processes. Dev Dyn 2003, 226:295-307.
  • [9]Forehand CJ, Farel PB: Anatomical and behavioral recovery from the effects of spinal cord transection: dependence on metamorphosis in anuran larvae. J Neurosci 1982, 2:654-652.
  • [10]Beattie MS, Bresnahan JC, Lopate G: Metamorphosis alters the response to spinal cord transection inXenopus laevisfrogs. J Neurobiol 1990, 21:1108-1122.
  • [11]Gargioli C, Slack JM: Cell lineage tracing duringXenopustail regeneration. Development 2004, 131:2669-2679.
  • [12]Chen Y, Lin G, Slack JM: Control of muscle regeneration in theXenopustadpole tail by Pax7. Development 2006, 133:2303-2313.
  • [13]Lin G, Chen Y, Slack JM: Regeneration of neural crest derivatives in theXenopustadpole tail. BMC Dev Biol 2007, 7:56. BioMed Central Full Text
  • [14]McHedlishvili L, Epperlein HH, Telzerow A, Tanaka EM: A clonal analysis of neural progenitors during axolotl spinal cord regeneration reveals evidence for both spatially restricted and multipotent progenitors. Development 2007, 134:2083-2093.
  • [15]Michel ME, Reier PJ: Axonal-ependymal associations during early regeneration of the transected spinal cord inXenopus laevistadpoles. J Neurocytol 1979, 8:529-548.
  • [16]Benraiss A, Arsanto JP, Coulon J, Thouveny Y: Neurogenesis during caudal spinal cord regeneration in adult newts. Dev Genes Evol 1999, 209:363-369.
  • [17]Avilion AA, Nicolis SK, Pevny LH, Perez L, Vivian N, Lovell-Badge R: Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev 2003, 17:126-140.
  • [18]Ferri AL, Cavallaro M, Braida D, Di Cristofano A, Canta A, Vezzani A, Ottolenghi S, Pandolfi PP, Sala M, DeBiasi S, Nicolis SK: Sox2 deficiency causes neurodegeneration and impaired neurogenesis in the adult mouse brain. Development 2004, 131:3805-3819.
  • [19]Zappone MV, Galli R, Catena R, Meani N, De Biasi S, Mattei E, Tiveron C, Vescovi AL, Lovell-Badge R, Ottolenghi S, Nicolis SK: Sox2 regulatory sequences direct expression of a (beta)-geo transgene to telencephalic neural stem cells and precursors of the mouse embryo, revealing regionalization of gene expression in CNS stem cells. Development 2000, 127:2367-2382.
  • [20]Kishi M, Mizuseki K, Sasai N, Yamazaki H, Shiota K, Nakanishi S, Sasai Y: Requirement of Sox2-mediated signaling for differentiation of earlyXenopusneuroectoderm. Development 2000, 127:791-800.
  • [21]Bylund M, Andersson E, Novitch BG, Muhr J: Vertebrate neurogenesis is counteracted by Sox1-3 activity. Nat Neurosci 2003, 6:1162-1168.
  • [22]Graham V, Khudyakov J, Ellis P, Pevny L: SOX2 functions to maintain neural progenitor identity. Neuron 2003, 39:749-765.
  • [23]Suh H, Consiglio A, Ray J, Sawai T, D’Amour KA, Gage FH: In vivofate analysis reveals the multipotent and self-renewal capacities of Sox2+ neural stem cells in the adult hippocampus. Cell Stem Cell 2007, 1:515-528.
  • [24]Favaro R, Valotta M, Ferri AL, Latorre E, Mariani J, Giachino C, Lancini C, Tosetti V, Ottolenghi S, Taylor V, Nicolis SK: Hippocampal development and neural stem cell maintenance require Sox2-dependent regulation of Shh. Nat Neurosci 2009, 12:1248-1256.
  • [25]Ferretti P, Zhang F, Santos-Ruiz L, Clarke JD: FGF signalling and blastema growth during amphibian tail regeneration. Int J Dev Biol 2001, 45:S127-S128.
  • [26]Walder S, Zhang F, Ferretti P: Up-regulation of neural stem cell markers suggests the occurrence of dedifferentiation in regenerating spinal cord. Dev Genes Evol 2003, 213:625-630.
  • [27]Grotmol S, Nordvik K, Kryvi H, Totland GK: A segmental pattern of alkaline phosphatase activity within the notochord coincides with the initial formation of the vertebral bodies. J Anat 2005, 206:427-436.
  • [28]Agathocleous M, Iordanova I, Willardsen MI, Xue XY, Vetter ML, Harris WA, Moore KB: A directional Wnt/beta-catenin-Sox2-proneural pathway regulates the transition from proliferation to differentiation in theXenopusretina. Development 2009, 136:3289-3299.
  • [29]Sims RT: Transection of the spinal cord in developingXenopus laevis. J Embryol Exp Morphol 1962, 10:115-126.
  • [30]Taniguchi Y, Sugiura T, Tazaki A, Watanabe K, Mochii M: Spinal cord is required for proper regeneration of the tail inXenopustadpoles. Dev Growth Differ 2008, 50:109-120.
  • [31]Polezhaev LV: Loss and Restoration of Regenerative Capacity in Tissue and Organs of Animals. Harvard University Press, Cambridge, MA; 1972:75-79.
  • [32]Holtzer SW: The inductive activity of the spinal cord in urodele tail regeneration. J Morphology 1956, 99:1-39.
  • [33]Poss KD: Advances in understanding tissue regenerative capacity and mechanisms in animals. Nat Rev Genet 2010, 11:710-722.
  • [34]Mondia JP, Levin M, Omenetto FG, Orendorff RD, Branch MR, Adams DS: Long-distance signals are required for morphogenesis of the regeneratingXenopustadpole tail, as shown by femtosecond-laser ablation. PLoS One 2011, 6:e24953.
  • [35]Drummond-Barbosa D: Stem cells, their niches and the systemic environment: an aging network. Genetics 2008, 180:1787-1797.
  • [36]Yoshino J, Tochinai S: Successful reconstitution of the non-regenerating adult telencephalon by cell transplantation inXenopus laevis. Dev Growth Differ 2004, 46:523-534.
  • [37]Reimer MM, Sorensen I, Kuscha V, Frank RE, Liu C, Becker CG, Becker T: Motor neuron regeneration in adult zebrafish. J Neurosci 2008, 28:8510-8516.
  • [38]Sirbulescu RF, Ilies I, Zupanc GK: Structural and functional regeneration after spinal cord injury in the weakly electric teleost fish,Apteronotus leptorhynchus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2009, 195:699-714.
  • [39]Zupanc GK, Wellbrock UM, Sirbulescu RF, Rajendran RS: Generation, long-term persistence, and neuronal differentiation of cells with nuclear aberrations in the adult zebrafish brain. Neuroscience 2009, 159:1338-1348.
  • [40]Dervan AG, Roberts BL: Reaction of spinal cord central canal cells to cord transection and their contribution to cord regeneration. J Comp Neurol 2003, 458:293-306.
  • [41]Zhang F, Ferretti P, Clarke JD: Recruitment of postmitotic neurons into the regenerating spinal cord of urodeles. Dev Dyn 2003, 226:341-348.
  • [42]Berg DA, Kirkham M, Beljajeva A, Knapp D, Habermann B, Ryge J, Tanaka EM, Simon A: Efficient regeneration by activation of neurogenesis in homeostatically quiescent regions of the adult vertebrate brain. Development 2010, 137:4127-4134.
  • [43]Guo Y, Ma L, Cristofanilli M, Hart RP, Hao A, Schachner M: Transcription factor Sox11b is involved in spinal cord regeneration in adult zebrafish. Neuroscience 2011, 172:329-341.
  • [44]Schlosser G, Koyano-Nakagawa N, Kintner C: Thyroid hormone promotes neurogenesis in theXenopusspinal cord. Dev Dyn 2002, 225:485-498.
  • [45]Egar M, Singer M: The role of ependyma in spinal cord regeneration in the urodele, Triturus. Exp Neurol 1972, 37:422-430.
  • [46]Nordlander RH, Singer M: The role of ependyma in regeneration of the spinal cord in the urodele amphibian tail. J Comp Neurol 1978, 180:349-374.
  • [47]McDonald D, Cheng C, Chen Y, Zochodne D: Early events of peripheral nerve regeneration. Neuron Glia Biol 2006, 2:139-147.
  • [48]Le N, Nagarajan R, Wang JY, Araki T, Schmidt RE, Milbrandt J: Analysis of congenital hypomyelinating Egr2Lo/Lo nerves identifies Sox2 as an inhibitor of Schwann cell differentiation and myelination. Proc Natl Acad Sci U S A 2005, 102:2596-2601.
  • [49]Parrinello S, Napoli I, Ribeiro S, Digby PW, Fedorova M, Parkinson DB, Doddrell RD, Nakayama M, Adams RH, Lloyd AC: EphB signaling directs peripheral nerve regeneration through Sox2-dependent Schwann cell sorting. Cell 2010, 143:145-155.
  • [50]Mothe AJ, Kulbatski I, van Bendegem RL, Lee L, Kobayashi E, Keating A, Tator CH: Analysis of green fluorescent protein expression in transgenic rats for tracking transplanted neural stem/progenitor cells. J Histochem Cytochem 2005, 53:1215-1226.
  • [51]Horky LL, Galimi F, Gage FH, Horner PJ: Fate of endogenous stem/progenitor cells following spinal cord injury. J Comp Neurol 2006, 498:525-538.
  • [52]Ke Y, Chi L, Xu R, Luo C, Gozal D, Liu R: Early response of endogenous adult neural progenitor cells to acute spinal cord injury in mice. Stem Cells 2006, 24:1011-1019.
  • [53]Meletis K, Barnabe-Heider F, Carlen M, Evergren E, Tomilin N, Shupliakov O, Frisen J: Spinal cord injury reveals multilineage differentiation of ependymal cells. PLoS Biol 2008, 6:e182.
  • [54]Shihabuddin LS, Horner PJ, Ray J, Gage FH: Adult spinal cord stem cells generate neurons after transplantation in the adult dentate gyrus. J Neurosci 2000, 20:8727-8735.
  • [55]Sive HL, Grainger RM, Harland RM: Early Development of Xenopus laevis: A Laboratory Manual. Cold Spring Harbor Laborarory Press, Cold Spring Harbor, NY, USA; 2000.
  • [56]Beck CW, Christen B, Slack JM: Molecular pathways needed for regeneration of spinal cord and muscle in a vertebrate. Dev Cell 2003, 5:429-439.
  • [57]Contreras EG, Gaete M, Sanchez N, Carrasco H, Larrain J: Early requirement of Hyaluronan for tail regeneration inXenopustadpoles. Development 2009, 136:2987-2996.
  • [58]Moreno M, Munoz R, Aroca F, Labarca M, Brandan E, Larrain J: Biglycan is a new extracellular component of the Chordin-BMP4 signaling pathway. EMBO J 2005, 24:1397-1405.
  • [59]Sugiura T, Taniguchi Y, Tazaki A, Ueno N, Watanabe K, Mochii M: Differential gene expression between the embryonic tail bud and regenerating larval tail inXenopus laevis. Dev Growth Differ 2004, 46:97-105.
  • [60]Agius E, Oelgeschlager M, Wessely O, Kemp C, De Robertis EM: Endodermal nodal-related signals and mesoderm induction inXenopus. Development 2000, 127:1173-1183.
  • [61]Pan FC, Chen Y, Loeber J, Henningfeld K, Pieler T: I-SceI meganuclease-mediated transgenesis inXenopus. Dev Dyn 2006, 235:247-252.
  文献评价指标  
  下载次数:68次 浏览次数:23次