Neural Development | |
Genome-wide expression profile of the response to spinal cord injury in Xenopus laevis reveals extensive differences between regenerative and non-regenerative stages | |
Juan Larraín1  Francisco Melo2  Marcia Gaete1  Javier von Marées1  Rosana Muñoz1  Víctor S Tapia1  Leonardo I Almonacid2  Mauricio Moreno1  Dasfne Lee-Liu1  | |
[1] Center for Aging and Regeneration, Millennium Nucleus for Regenerative Biology, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile;Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile | |
关键词: Xenopus laevis; Spinal cord regeneration; RNA-Seq; Regenerative organisms; Neurogenesis; Metabolism; Inflammation; Immune system; HOX genes; Cell cycle; | |
Others : 802675 DOI : 10.1186/1749-8104-9-12 |
|
received in 2014-02-28, accepted in 2014-05-02, 发布年份 2014 |
【 摘 要 】
Background
Xenopus laevis has regenerative and non-regenerative stages. As a tadpole, it is fully capable of functional recovery after a spinal cord injury, while its juvenile form (froglet) loses this capability during metamorphosis. We envision that comparative studies between regenerative and non-regenerative stages in Xenopus could aid in understanding why spinal cord regeneration fails in human beings.
Results
To identify the mechanisms that allow the tadpole to regenerate and inhibit regeneration in the froglet, we obtained a transcriptome-wide profile of the response to spinal cord injury in Xenopus regenerative and non-regenerative stages. We found extensive transcriptome changes in regenerative tadpoles at 1 day after injury, while this was only observed by 6 days after injury in non-regenerative froglets. In addition, when comparing both stages, we found that they deployed a very different repertoire of transcripts, with more than 80% of them regulated in only one stage, including previously unannotated transcripts. This was supported by gene ontology enrichment analysis and validated by RT-qPCR, which showed that transcripts involved in metabolism, response to stress, cell cycle, development, immune response and inflammation, neurogenesis, and axonal regeneration were regulated differentially between regenerative and non-regenerative stages.
Conclusions
We identified differences in the timing of the transcriptional response and in the inventory of regulated transcripts and biological processes activated in response to spinal cord injury when comparing regenerative and non-regenerative stages. These genes and biological processes provide an entry point to understand why regeneration fails in mammals. Furthermore, our results introduce Xenopus laevis as a genetic model organism to study spinal cord regeneration.
【 授权许可】
2014 Lee-Liu et al.; licensee BioMed Central Ltd.
Files | Size | Format | View |
---|---|---|---|
Figure 1. | 34KB | Image | download |
Figure 7. | 125KB | Image | download |
Figure 6. | 120KB | Image | download |
Figure 5. | 133KB | Image | download |
Figure 1. | 113KB | Image | download |
Figure 3. | 78KB | Image | download |
Figure 2. | 138KB | Image | download |
Figure 1. | 216KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 1.
Figure 5.
Figure 6.
Figure 7.
Figure 1.
【 参考文献 】
- [1]Polezhaev LV: Loss and Restoration of Regenerative Capacity in Tissues and Organs of Animals. Cambridge, MA: Harvard University Press; 1972.
- [2]Deuchar E: Regeneration of amputated limb-buds in early rat embryos. J Embryol Exp Morphol 1976, 35:345-354.
- [3]Porrello ER, Mahmoud AI, Simpson E, Hill JA, Richardson JA, Olson EN, Sadek HA: Transient regenerative potential of the neonatal mouse heart. Science 2011, 331:1078-1080.
- [4]Illingworth CM: Trapped fingers and amputated finger tips in children. J Pediatr Surg 1974, 9:853-858.
- [5]Becker RO: The bioelectric factors in amphibian-limb regeneration. J Bone Joint Surg Am 1961, 43-A:643-656.
- [6]Lee-Liu D, Edwards-Faret G, Tapia VS, Larraín J: Spinal cord regeneration: lessons for mammals from non-mammalian vertebrates. Genesis 2013, 51:529-544.
- [7]Diaz Quiroz JF, Echeverri K: Spinal cord regeneration: where fish, frogs and salamanders lead the way, can we follow? Biochem J 2013, 451:353-364.
- [8]Thuret S, Moon LDF, Gage FH: Therapeutic interventions after spinal cord injury. Nat Rev Neurosci 2006, 7:628-643.
- [9]Willyard C: Stem cells: a time to heal. Nature 2013, 503:S4-6.
- [10]Barnabé-Heider F, Göritz C, Sabelström H, Takebayashi H, Pfrieger FW, Meletis K, Frisén J: Origin of new glial cells in intact and injured adult spinal cord. Stem Cell 2010, 7:470-482.
- [11]Sofroniew MV: Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci 2009, 32:638-647.
- [12]Tanaka E, Ferretti P: Considering the evolution of regeneration in the central nervous system. Nat Rev Neurosci 2009, 10:713-723.
- [13]Tuszynski MH, Steward O: Concepts and methods for the study of axonal regeneration in the CNS. Neuron 2012, 74:777-791.
- [14]Tetzlaff W, Okon EB, Karimi-Abdolrezaee S, Hill CE, Sparling JS, Plemel JR, Plunet WT, Tsai EC, Baptiste D, Smithson LJ, Kawaja MD, Fehlings MG, Kwon BK: A systematic review of cellular transplantation therapies for spinal cord injury. J Neurotrauma 2011, 28:1611-1682.
- [15]Becker CG: L1.1 is involved in spinal cord regeneration in adult zebrafish. J Neurosci 2004, 24:7837-7842.
- [16]Slack JMW, Lin G, Chen Y: The Xenopus tadpole: a new model for regeneration research. Cell Mol Life Sci 2008, 65:54-63.
- [17]Forehand CJ, Farel PB: Anatomical and behavioral recovery from the effects of spinal cord transection: dependence on metamorphosis in anuran larvae. J Neurosci 1982, 2:654-652.
- [18]Filoni S, Bosco L, Cioni C: Reconstitution of the spinal cord after ablation in larval Xenopus laevis. Acta Embryol Morphol Exp 1984, 5:109-129.
- [19]Beattie MS, Bresnahan JC, Lopate G: Metamorphosis alters the response to spinal cord transection in Xenopus laevis frogs. J Neurobiol 1990, 21:1108-1122.
- [20]Gibbs KM, Chittur SV, Szaro BG: Metamorphosis and the regenerative capacity of spinal cord axons in Xenopus laevis. Eur J Neurosci 2011, 33:9-25.
- [21]Gaete M, Muñoz R, Sánchez N, Tampe R, Moreno M, Contreras EG, Lee-Liu D, Larrain J: Spinal cord regeneration in Xenopus tadpoles proceeds through activation of Sox2 positive cells. Neural Dev 2012, 7:13. BioMed Central Full Text
- [22]Riddiford N, Olson PD: Wnt gene loss in flatworms. Dev Genes Evol 2011, 221:187-197.
- [23]Sikes JM, Newmark PA: Restoration of anterior regeneration in a planarian with limited regenerative ability. Nature 2013, 500:77-80.
- [24]Liu SY, Selck C, Friedrich B, Lutz R, Vila-Farré M, Dahl A, Brandl H, Lakshmanaperumal N, Henry I, Rink JC: Reactivating head regrowth in a regeneration-deficient planarian species. Nature 2013, 500:81-84.
- [25]Bando T, Ishimaru Y, Kida T, Hamada Y, Matsuoka Y, Nakamura T, Ohuchi H, Noji S, Mito T: Analysis of RNA-Seq data reveals involvement of JAK/STAT signalling during leg regeneration in the cricket Gryllus bimaculatus. Development 2013, 140:959-964.
- [26]Jäger M, Ott C-E, Grünhagen J, Hecht J, Schell H, Mundlos S, Duda GN, Robinson PN, Lienau J: Composite transcriptome assembly of RNA-seq data in a sheep model for delayed bone healing. BMC Genomics 2011, 12:158. BioMed Central Full Text
- [27]Sousounis K, Looso M, Maki N, Ivester CJ, Braun T, Tsonis PA: Transcriptome analysis of newt lens regeneration reveals distinct gradients in gene expression patterns. PLoS One 2013, 8:e61445.
- [28]Schug J, McKenna LB, Walton G, Hand N, Mukherjee S, Essuman K, Shi Z, Gao Y, Markley K, Nakagawa M, Kameswaran V, Vourekas A, Friedman JR, Kaestner KH, Greenbaum LE: Dynamic recruitment of microRNAs to their mRNA targets in the regenerating liver. BMC Genomics 2013, 14:264. BioMed Central Full Text
- [29]Yao B, Zhao Y, Zhang H, Zhang M, Liu M, Liu H, Li J: Sequencing and de novo analysis of the Chinese Sika deer antler-tip transcriptome during the ossification stage using Illumina RNA-Seq technology. Biotechnol Lett 2012, 34:813-822.
- [30]Love NR, Chen Y, Bonev B, Gilchrist MJ, Fairclough L, Lea R, Mohun TJ, Paredes R, Zeef LA, Amaya E: Genome-wide analysis of gene expression during Xenopus tropicalis tadpole tail regeneration. BMC Dev Biol 2011, 11:70. BioMed Central Full Text
- [31]Love NR, Chen Y, Ishibashi S, Kritsiligkou P, Lea R, Koh Y, Gallop JL, Dorey K, Amaya E: Amputation-induced reactive oxygen species are required for successful Xenopus tadpole tail regeneration. Nat Cell Biol 2013, 15:222-228.
- [32]Zukor KA, Kent DT, Odelberg SJ: Meningeal cells and glia establish a permissive environment for axon regeneration after spinal cord injury in newts. Neural Dev 2011, 6:1. BioMed Central Full Text
- [33]Tsai LH, Delalle I, Caviness VS Jr, Chae T, Harlow E: p35 is a neural-specific regulatory subunit of cyclin-dependent kinase 5. Nature 1994, 371:419-423.
- [34]Harel N, Strittmatter S: Can regenerating axons recapitulate developmental guidance during recovery from spinal cord injury? Nat Rev Neurosci 2006, 7:603-616.
- [35]Yang P, Yang Z: Enhancing intrinsic growth capacity promotes adult CNS regeneration. J Neurol Sci 2012, 312:1-6.
- [36]Di Giovanni S, Faden AI, Yakovlev A, Duke-Cohan JS, Finn T, Thouin M, Knoblach S, De Biase A, Bregman BS, Hoffman EP: Neuronal plasticity after spinal cord injury: identification of a gene cluster driving neurite outgrowth. FASEB J 2005, 19:153-154.
- [37]Xiao L, Ma Z-L, Li X, Lin Q-X, Que H-P, Liu S-J: cDNA microarray analysis of spinal cord injury and regeneration related genes in rat. Sheng Li Xue Bao 2005, 57:705-713.
- [38]Strickland ER, Hook MA, Balaraman S, Huie JR, Grau JW, Miranda RC: MicroRNA dysregulation following spinal cord contusion: implications for neural plasticity and repair. Neuroscience 2011, 186:146-160.
- [39]Fan M, Mi R, Yew DT, Chan WY: Analysis of gene expression following sciatic nerve crush and spinal cord hemisection in the mouse by microarray expression profiling. Cell Mol Neurobiol 2001, 21:497-508.
- [40]Kruse F, Bosse F, Vogelaar CF, Brazda N, Küry P, Gasis M, Müller HW: Cortical gene expression in spinal cord injury and repair: insight into the functional complexity of the neural regeneration program. Front Mol Neurosci 2011, 4:26.
- [41]Yang Y, Xie Y, Chai H, Fan M, Liu S, Liu H, Bruce I, Wu W: Microarray analysis of gene expression patterns in adult spinal motoneurons after different types of axonal injuries. Brain Res 2006, 1075:1-12.
- [42]Thuret S, Thallmair M, Horky LL, Gage FH: Enhanced functional recovery in MRL/MpJ mice after spinal cord dorsal hemisection. PLoS One 2012, 7:e30904.
- [43]Munro KM, Perreau VM, Turnley AM: Differential gene expression in the EphA4 knockout spinal cord and analysis of the inflammatory response following spinal cord injury. PLoS One 2012, 7:e37635.
- [44]Monaghan JR, Walker JA, Page RB, Putta S, Beachy CK, Voss SR: Early gene expression during natural spinal cord regeneration in the salamander Ambystoma mexicanum. J Neurochem 2007, 101:27-40.
- [45]Sehm T, Sachse C, Frenzel C, Echeverri K: miR-196 is an essential early-stage regulator of tail regeneration, upstream of key spinal cord patterning events. Dev Biol 2009, 334:468-480.
- [46]Guo Y, Ma L, Cristofanilli M, Hart RP, Hao A, Schachner M: Transcription factor Sox11b is involved in spinal cord regeneration in adult zebrafish. Neuroscience 2011, 172:329-341.
- [47]Ma L, Yu Y-M, Guo Y, Hart RP, Schachner M: Cysteine- and glycine-rich protein 1a is involved in spinal cord regeneration in adult zebrafish. Eur J Neurosci 2012, 35:353-365.
- [48]Sims RT: Transection of the spinal cord in developing Xenopus laevis. J Embryol Exp Morphol 1962, 10:115-126.
- [49]Schlosser G, Koyano-Nakagawa N, Kintner C: Thyroid hormone promotes neurogenesis in the Xenopus spinal cord. Dev Dyn 2002, 225:485-498.
- [50]Gibbs KM, Szaro BG: Regeneration of descending projections in Xenopus laevis tadpole spinal cord demonstrated by retrograde double labeling. Brain Res 2006, 1088:68-72.
- [51]Avci HX, Lebrun C, Wehrlé R, Doulazmi M, Chatonnet F, Morel M-P, Ema M, Vodjdani G, Sotelo C, Flamant F, Dusart I: Thyroid hormone triggers the developmental loss of axonal regenerative capacity via thyroid hormone receptor α1 and krüppel-like factor 9 in Purkinje cells. Proc Natl Acad Sci USA 2012, 109:14206-14211.
- [52]Takebayashi K, Takahashi S, Yokota C, Tsuda H, Nakanishi S, Asashima M, Kageyama R: Conversion of ectoderm into a neural fate by ATH-3, a vertebrate basic helix-loop-helix gene homologous to Drosophila proneural gene atonal. EMBO J 1997, 16:384-395.
- [53]Ferreiro B, Skoglund P, Bailey A, Dorsky R, Harris WA: XASH1, a Xenopus homolog of achaete-scute: a proneural gene in anterior regions of the vertebrate CNS. Mech Dev 1993, 40:25-36.
- [54]de la Torre JR, Hopker VH, Ming GL, Poo MM, Tessier-Lavigne M, Hemmati-Brivanlou A, Holt CE: Turning of retinal growth cones in a netrin-1 gradient mediated by the netrin receptor DCC. Neuron 1997, 19:1211-1224.
- [55]Folmes CDL, Dzeja PP, Nelson TJ, Terzic A: Metabolic plasticity in stem cell homeostasis and differentiation. Cell Stem Cell 2012, 11:596-606.
- [56]Folmes CDL, Nelson TJ, Martinez-Fernandez A, Arrell DK, Lindor JZ, Dzeja PP, Ikeda Y, Perez-Terzic C, Terzic A: Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. Cell Metab 2011, 14:264-271.
- [57]Zhang J, Nuebel E, Daley GQ, Koehler CM, Teitell MA: Metabolic regulation in pluripotent stem cells during reprogramming and self-renewal. Cell Stem Cell 2012, 11:589-595.
- [58]Panopoulos AD, Yanes O, Ruiz S, Kida YS, Diep D, Tautenhahn R, Herrerías A, Batchelder EM, Plongthongkum N, Lutz M, Berggren WT, Zhang K, Evans RM, Siuzdak G, Izpisua Belmonte JC: The metabolome of induced pluripotent stem cells reveals metabolic changes occurring in somatic cell reprogramming. Cell Res 2012, 22:168-177.
- [59]Shyh-Chang N, Zhu H, Yvanka De Soysa T, Shinoda G, Seligson MT, Tsanov KM, Nguyen L, Asara JM, Cantley LC, Daley GQ: Lin28 enhances tissue repair by reprogramming cellular metabolism. Cell 2013, 155:778-792.
- [60]David S, Kroner A: Repertoire of microglial and macrophage responses after spinal cord injury. Nat Rev Neurosci 2011, 12:388-399.
- [61]Donnelly DJ, Popovich PG: Inflammation and its role in neuroprotection, axonal regeneration and functional recovery after spinal cord injury. Exp Neurol 2008, 209:378-388.
- [62]Kokaia Z, Martino G, Schwartz M, Lindvall O: Cross-talk between neural stem cells and immune cells: the key to better brain repair? Nat Neurosci 2012, 15:1078-1087.
- [63]Franchini A, Bertolotti E: Tail regenerative capacity and iNOS immunolocalization in Xenopus laevis tadpoles. Cell Tissue Res 2011, 344:261-269.
- [64]Lee-Liu D, Almonacid LI, Faunes F, Melo F, Larraín J: Transcriptomics using next generation sequencing technologies. Methods Mol Biol 2012, 917:293-317.
- [65]Langmead B, Trapnell C, Pop M, Salzberg SL: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 2009, 10:R25. BioMed Central Full Text
- [66]Robinson MD, McCarthy DJ, Smyth GK: edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26:139-140.
- [67]Robinson MD, Oshlack A: A scaling normalization method for differential expression analysis of RNA-Seq data. Genome Biol 2010, 11:R25. BioMed Central Full Text
- [68]Magrane M, Consortium U: UniProt Knowledgebase: a hub of integrated protein data. Database (Oxford) 2011, 2011:bar009.
- [69]Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M: Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 2005, 21:3674-3676.
- [70]Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol 1990, 215:403-410.
- [71]Hunter S, Jones P, Mitchell A, Apweiler R, Attwood TK, Bateman A, Bernard T, Binns D, Bork P, Burge S, de Castro E, Coggill P, Corbett M, Das U, Daugherty L, Duquenne L, Finn RD, Fraser M, Gough J, Haft D, Hulo N, Kahn D, Kelly E, Letunic I, Lonsdale D, Lopez R, Madera M, Maslen J, McAnulla C, McDowall J, et al.: InterPro in 2011: new developments in the family and domain prediction database. Nucleic Acids Res 2012, 40:D306-312.
- [72]De Hoon MJL, Imoto S, Nolan J, Miyano S: Open source clustering software. Bioinformatics 2004, 20:1453-1454.
- [73]Saldanha AJ: Java Treeview - extensible visualization of microarray data. Bioinformatics 2004, 20:3246-3248.
- [74]Pfaffl MW: A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 2001, 29:e45.