期刊论文详细信息
Radiation Oncology
Impact of treatment planning and delivery factors on gastrointestinal toxicity: an analysis of data from the RADAR prostate radiotherapy trial
Jim W Denham6  David J Joseph3  Michele Krawiec1  Sharon Richardson1  Angel Kennedy1  Kerwyn Foo2  Rachel Kearvell1  Annette Haworth4  Max Bulsara5  Martin A Ebert1  Noorazrul Yahya7 
[1] Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia;Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia;School of Surgery, University of Western Australia, Crawley, Western Australia, Australia;Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria, Australia;Institute for Health Research, University of Notre Dame, Fremantle, Western Australia, Australia;School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales, Australia;School of Health Sciences, National University of Malaysia, Bangi, Malaysia
关键词: Dose-volume histogram;    Technical modifications;    Prostate cancer;    Gastrointestinal toxicity;   
Others  :  1150583
DOI  :  10.1186/s13014-014-0282-7
 received in 2014-09-30, accepted in 2014-12-01,  发布年份 2014
PDF
【 摘 要 】

Background

To assess the impact of incremental modifications of treatment planning and delivery technique, as well as patient anatomical factors, on late gastrointestinal toxicity using data from the TROG 03.04 RADAR prostate radiotherapy trial.

Methods

The RADAR trial accrued 813 external beam radiotherapy participants during 2003–2008 from 23 centres. Following review and archive to a query-able database, digital treatment plans and data describing treatment technique for 754 patients were available for analysis. Treatment demographics, together with anatomical features, were assessed using uni- and multivariate regression models against late gastrointestinal toxicity at 18-, 36- and 54-month follow-up. Regression analyses were reviewed in the context of dose-volume data for the rectum and anal canal.

Results

A multivariate analysis at 36-month follow-up shows that patients planned using a more rigorous dose calculation algorithm (DCA) was associated with a lower risk of stool frequency (OR: 0.435, CI: 0.242–0.783, corrected p = 0.04). Patients using laxative as a method of bowel preparation had higher risk of having increased stool frequency compared to patients with no dietary intervention (OR: 3.639, CI: 1.502–8.818, corrected p = 0.04). Despite higher risks of toxicities, the anorectum, anal canal and rectum dose-volume histograms (DVH) indicate patients using laxative had unremarkably different planned dose distributions. Patients planned with a more rigorous DCA had lower median DVH values between EQD23 = 15 Gy and EQD23 = 35 Gy. Planning target volume (PTV), conformity index, rectal width and prescription dose were not significant when adjusted for false discovery rate. Number of beams, beam energy, treatment beam definition, positioning orientation, rectum-PTV separation, rectal length and mean cross sectional area did not affect the risk of toxicities.

Conclusions

The RADAR study dataset has allowed an assessment of technical modifications on gastrointestinal toxicity. A number of interesting associations were subsequently found and some factors, previously hypothesised to influence toxicity, did not demonstrate any significant impact. We recommend trial registries be encouraged to record technical modifications introduced during the trial in order for more powerful evidence to be gathered regarding the impact of the interventions.

【 授权许可】

   
2014 Yahya et al. ; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150405201046205.pdf 838KB PDF download
Figure 1. 75KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]Roelofs E, Persoon L, Qamhiyeh S, Verhaegen F, De Ruysscher D, Scholz M, Iancu G, Engelsman M, Rasch C, Zijp L, Meerleer GD, Coghe M, Langendijk J, Schilstra C, Pijls-Johannesma M, Lambin P: Design of and technical challenges involved in a framework for multicentric radiotherapy treatment planning studies. Radiother Oncol 2010, 97:567-571.
  • [2]Antonella F, Eugenio V, Dirk A, Carsten B, Alessandro C, Tommy K, Giorgia N, Luca C: On the dosimetric behaviour of photon dose calculation algorithms in the presence of simple geometric heterogeneities: comparison with Monte Carlo calculations. Phys Med Biol 2007, 52:1363.
  • [3]Koper PC, Jansen P, van Putten W, van Os M, Wijnmaalen AJ, Lebesque JV, Levendag PC: Gastro-intestinal and genito-urinary morbidity after 3D conformal radiotherapy of prostate cancer: observations of a randomized trial. Radiother Oncol 2004, 73:1-9.
  • [4]Dearnaley DP, Khoo VS, Norman AR, Meyer L, Nahum A, Tait D, Yarnold J, Horwich A: Comparison of radiation side-effects of conformal and conventional radiotherapy in prostate cancer: a randomised trial. Lancet 1999, 353:267-272.
  • [5]Lips IM, van Gils CH, Kotte AN, van Leerdam ME, Franken SP, van der Heide UA, van Vulpen M: A double-blind placebo-controlled randomized clinical trial with magnesium oxide to reduce intrafraction prostate motion for prostate cancer radiotherapy. Int J Radiat Oncol Biol Phys 2012, 83:653-660.
  • [6]Skwarchuk MW, Jackson A, Zelefsky MJ, Venkatraman ES, Cowen DM, Levegrün S, Burman CM, Fuks Z, Leibel SA, Ling CC: Late rectal toxicity after conformal radiotherapy of prostate cancer (I): multivariate analysis and dose–response. Int J Radiat Oncol Biol Phys 2000, 47:103-113.
  • [7]Zelefsky MJ, Kollmeier M, Cox B, Fidaleo A, Sperling D, Pei X, Carver B, Coleman J, Lovelock M, Hunt M: Improved clinical outcomes with high-dose image guided radiotherapy compared with non-IGRT for the treatment of clinically localized prostate cancer. Int J Radiat Oncol Biol Phys 2012, 84:125-129.
  • [8]Al-Mamgani A, Heemsbergen WD, Peeters ST, Lebesque JV: Role of intensity-modulated radiotherapy in reducing toxicity in dose escalation for localized prostate cancer. Int J Radiat Oncol Biol Phys 2009, 73:685-691.
  • [9]Pinkawa M, Piroth MD, Fischedick K, Nussen S, Klotz J, Holy R, Eble MJ: Self-assessed bowel toxicity after external beam radiotherapy for prostate cancer–predictive factors on irritative symptoms, incontinence and rectal bleeding. Radiat Oncol 2009, 4:36. BioMed Central Full Text
  • [10]van Loon J, Grutters J, Macbeth F: Evaluation of novel radiotherapy technologies: what evidence is needed to assess their clinical and cost effectiveness, and how should we get it? Lancet Oncol 2012, 13:e169-e177.
  • [11]Deasy JO, Bentzen SM, Jackson A, Ten Haken RK, Yorke ED, Constine LS, Sharma A, Marks LB: Improving normal tissue complication probability models: the need to adopt a “data-pooling” culture. Int J Radiat Oncol Biol Phys 2010, 76:S151-S154.
  • [12]TROG 03.04 RADAR trial – randomised androgen deprivation and radiotherapy. 2005, http://clinicaltrials.gov/ct/show/NCT00193856.
  • [13]Denham JW, Wilcox C, Joseph D, Spry NA, Lamb DS, Tai K-H, Matthews J, Atkinson C, Turner S, Christie D, Gogna NK, Kenny L, Duchesne G, Delahunt B, McElduff P: Quality of life in men with locally advanced prostate cancer treated with leuprorelin and radiotherapy with or without zoledronic acid (TROG 03.04 RADAR): secondary endpoints from a randomised phase 3 factorial trial. Lancet Oncol 2012, 13:1260-1270.
  • [14]Ebert MA, Harrison KM, Howlett SJ, Cornes D, Bulsara M, Hamilton CS, Kron T, Joseph DJ, Denham JW: Dosimetric intercomparison for multicenter clinical trials using a patient-based anatomic pelvic phantom. Med Phys 2011, 38:5167-5175.
  • [15]Haworth A, Kearvell R, Greer PB, Hooton B, Denham JW, Lamb D, Duchesne G, Murray J, Joseph D: Assuring high quality treatment delivery in clinical trials - results from the Trans-Tasman Radiation Oncology Group (TROG) study 03.04 “RADAR” set-up accuracy study. Radiother Oncol 2009, 90:299-306.
  • [16]Kearvell R, Haworth A, Ebert MA, Murray J, Hooton B, Richardson S, Joseph DJ, Lamb D, Spry NA, Duchesne G, Denham JW: Quality improvements in prostate radiotherapy: outcomes and impact of comprehensive quality assurance during the TROG 03.04 ‘RADAR’ trial. J Med Imaging Radiat Oncol 2013, 57:247-257.
  • [17]Denham JW, Wilcox C, Lamb DS, Spry NA, Duchesne G, Atkinson C, Matthews J, Turner S, Kenny L, Tai KH, Gogna NK, Ebert M, Delahunt B, McElduff P, Joseph D: Rectal and urinary dysfunction in the TROG 03.04 RADAR trial for locally advanced prostate cancer. Radiother Oncol 2012, 105:184-192.
  • [18]International Commission on Radiation Units and Measurements: ICRU Report 62 In Prescribing, Recording, and Reporting Photon Beam Therapy (Supplement to ICRU Report 50). ICRU, Bethesda, MD; 1999.
  • [19]Ebert MA, Haworth A, Kearvell R, Hooton B, Coleman R, Spry N, Bydder S, Joseph D: Detailed review and analysis of complex radiotherapy clinical trial planning data: evaluation and initial experience with the SWAN software system. Radiother Oncol 2008, 86:200-210.
  • [20]Heemsbergen WD, Hoogeman MS, Witte MG, Peeters ST, Incrocci L, Lebesque JV: Increased risk of biochemical and clinical failure for prostate patients with a large rectum at radiotherapy planning: results from the Dutch trial of 68 GY versus 78 Gy. Int J Radiat Oncol Biol Phys 2007, 67:1418-1424.
  • [21]Trotti A, Byhardt R, Stetz J, Gwede C, Corn B, Fu K, Gunderson L, McCormick B, Morrisintegral M, Rich T, Shipley W, Curran W: Common toxicity criteria: version 2.0. an improved reference for grading the acute effects of cancer treatment: impact on radiotherapy. Int J Radiat Oncol Biol Phys 2000, 47:13-47.
  • [22]Lent soma scales for all anatomic sites.Int J Radiat Oncol Biol Phys 1995, 31:1049–1091 (http://www.ncbi.nlm.nih.gov/pubmed/7713776).
  • [23]Christie D, Denham J, Steigler A, Lamb D, Turner S, Mameghan H, Joseph D, Matthews J, Franklin I, Atkinson C, North J, Poulsen M, Spry NA, Tai KH, Wynne C, Duchesne G, Kovacev O, Francis L, Kramar A, D'Este C, Bill D: Delayed rectal and urinary symptomatology in patients treated for prostate cancer by radiotherapy with or without short term neo-adjuvant androgen deprivation. Radiother Oncol 2005, 77:117-125.
  • [24]Schmid MP, Potter R, Bombosch V, Sljivic S, Kirisits C, Dorr W, Goldner G: Late gastrointestinal and urogenital side-effects after radiotherapy–incidence and prevalence. subgroup-analysis within the prospective Austrian-German phase II multicenter trial for localized prostate cancer. Radiother Oncol 2012, 104:114-118.
  • [25]Benjamini Y, Hochberg Y: Controlling the false discovery rate - a practical and powerful approach to multiple testing. J Roy Stat Soc B Met 1995, 57:289-300.
  • [26]R Development Core Team: R: a language and environment for statistical computing. 2013. R Foundation for Statistical Computing, Vienna, Austria ᅟ 2013. City: ISBN 3-900051-07-0
  • [27]Peeters ST, Lebesque JV, Heemsbergen WD, van Putten WL, Slot A, Dielwart MF, Koper PC: Localized volume effects for late rectal and anal toxicity after radiotherapy for prostate cancer. Int J Radiat Oncol Biol Phys 2006, 64:1151-1161.
  • [28]Bentzen SM, Dorr W, Gahbauer R, Howell RW, Joiner MC, Jones B, Jones DT, van der Kogel AJ, Wambersie A, Whitmore G: Bioeffect modeling and equieffective dose concepts in radiation oncology–terminology, quantities and units. Radiother Oncol 2012, 105:266-268.
  • [29]Ebert MA FK, Haworth A, Gulliford SL, Kennedy A, Joseph DJ, Denham JW: Gastro-intestinal dose-histogram effects in the context of dose-volume constrained prostate radiotherapy: an analysis of data from the RADAR prostate radiotherapy trial.Int J Radiat Oncol Biol Phys in press 9/11/14
  • [30]Munbodh R, Jackson A, Bauer J, Ross Schmidtlein C, Zelefsky MJ: Dosimetric and anatomic indicators of late rectal toxicity after high-dose intensity modulated radiation therapy for prostate cancer. Med Phys 2008, 35:2137-2150.
  • [31]Michalski JM, Bae K, Roach M, Markoe AM, Sandler HM, Ryu J, Parliament MB, Straube W, Valicenti RK, Cox JD: Long-term toxicity following 3D conformal radiation therapy for prostate cancer from the RTOG 9406 phase I/II dose escalation study. Int J Radiat Oncol Biol Phys 2010, 76:14-22.
  • [32]Fiorino C, Di Muzio N, Broggi S, Cozzarini C, Maggiulli E, Alongi F, Valdagni R, Fazio F, Calandrino R: Evidence of limited motion of the prostate by carefully emptying the rectum as assessed by daily MVCT image guidance with helical tomotherapy. Int J Radiat Oncol Biol Phys 2008, 71:611-617.
  • [33]Smitsmans MH, Pos FJ, de Bois J, Heemsbergen WD, Sonke JJ, Lebesque JV, van Herk M: The influence of a dietary protocol on cone beam CT-guided radiotherapy for prostate cancer patients. Int J Radiat Oncol Biol Phys 2008, 71:1279-1286.
  • [34]Knoos T, Wieslander E, Cozzi L, Brink C, Fogliata A, Albers D, Nystrom H, Lassen S: Comparison of dose calculation algorithms for treatment planning in external photon beam therapy for clinical situations. Phys Med Biol 2006, 51:5785-5807.
  • [35]Bufacchi A, Nardiello B, Capparella R, Begnozzi L: Clinical implications in the use of the PBC algorithm versus the AAA by comparison of different NTCP models/parameters. Radiat Oncol 2013, 8:164. BioMed Central Full Text
  • [36]McNair HA, Wedlake L, Lips IM, Andreyev J, Van Vulpen M, Dearnaley D: A systematic review: effectiveness of rectal emptying preparation in prostate cancer patients. Pract Radiat Oncol 2014, 4:437-447.
  • [37]Davidson SE, Ibbott GS, Prado KL, Dong L, Liao Z, Followill DS: Accuracy of two heterogeneity dose calculation algorithms for IMRT in treatment plans designed using an anthropomorphic thorax phantom. Med Phys 2007, 34:1850-1857.
  • [38]Fowler JF: The radiobiology of prostate cancer including new aspects of fractionated radiotherapy. Acta Oncol 2005, 44:265-276.
  • [39]Lambin P, Roelofs E, Reymen B, Velazquez ER, Buijsen J, Zegers CM, Carvalho S, Leijenaar RT, Nalbantov G, Oberije C, Scott Marshall M, Hoebers F, Troost EG, van Stiphout RG, van Elmpt W, van der Weijden T, Boersma L, Valentini V, Dekker A: ‘Rapid Learning health care in oncology’ - an approach towards decision support systems enabling customised radiotherapy. Radiother Oncol 2013, 109:159-164.
  文献评价指标  
  下载次数:8次 浏览次数:12次