期刊论文详细信息
Molecular Pain
S1 is associated with chronic low back pain: a functional and structural MRI study
Randy L Gollub2  Ajay D Wasan1  Jordan W Smoller3  Vitaly Napadow2  Marco L Loggia2  Danhong Wang3  Hesheng Liu3  Ying Tan3  Karin Jensen3  Amanda H Cook3  Alexandra Cheetham3  Hsiao-Ying Wey2  Rosa B Spaeth3  Jian Kong2 
[1] Departments of Anesthesiology and Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Chestnut Hill, MA USA;A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA USA;Department of Psychiatry, Massachusetts General Hospital, Charlestown, Harvard Medical School, 120 2nd Ave., Room 101, Charlestown, MA 02129, USA
关键词: Primary somatosensory cortex;    Cortical thickness;    Functional connectivity;    fMRI;    Chronic low back pain;   
Others  :  862303
DOI  :  10.1186/1744-8069-9-43
 received in 2013-03-25, accepted in 2013-08-09,  发布年份 2013
PDF
【 摘 要 】

A fundamental characteristic of neural circuits is the capacity for plasticity in response to experience. Neural plasticity is associated with the development of chronic pain disorders. In this study, we investigated 1) brain resting state functional connectivity (FC) differences between patients with chronic low back pain (cLBP) and matched healthy controls (HC); 2) FC differences within the cLBP patients as they experienced different levels of endogenous low back pain evoked by exercise maneuvers, and 3) morphometric differences between cLBP patients and matched HC. We found the dynamic character of FC in the primary somatosensory cortex (S1) in cLBP patients, i.e., S1 FC decreased when the patients experienced low intensity LBP as compared with matched healthy controls, and FC at S1 increased when cLBP patients experienced high intensity LBP as compared with the low intensity condition. In addition, we also found increased cortical thickness in the bilateral S1 somatotopically associated with the lower back in cLBP patients as compared to healthy controls. Our results provide evidence of structural plasticity co-localized with areas exhibiting FC changes in S1 in cLBP patients.

【 授权许可】

   
2013 Kong et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140725012910443.pdf 1071KB PDF download
87KB Image download
71KB Image download
86KB Image download
【 图 表 】

【 参考文献 】
  • [1]Hart LG, Deyo RA, Cherkin DC: Physician office visits for low back pain. Frequency, clinical evaluation, and treatment patterns from a U.S. National survey. Spine 1995, 20:11-19.
  • [2]Chou R, Shekelle P: Will this patient develop persistent disabling low back pain? Jama 2010, 303:1295-1302.
  • [3]Ehrlich GE: Low back pain. Bull World Health Organ 2003, 81:671-676.
  • [4]Savigny P, Watson P, Underwood M, et al.: Low back pain: early management of persistent non-specific low back pain. London: National Collaborating Centre for Primary Care and Royal College of General Practitioners (Clinical guideline 88); 2009.
  • [5]Chou R, Qaseem A, Snow V, Casey D, Cross JT Jr, Shekelle P, Owens DK: Diagnosis and treatment of low back pain: a joint clinical practice guideline from the American college of physicians and the American pain society. Ann Intern Med 2007, 147:478-491.
  • [6]Bogduk N: Pharmacological alternatives for the alleviation of back pain. Expert Opin Pharmacother 2004, 5:2091-2098.
  • [7]Tagliazucchi E, Balenzuela P, Fraiman D, Chialvo DR: Brain resting state is disrupted in chronic back pain patients. Neurosci Lett 2010, 485:26-31.
  • [8]Baliki MN, Baria AT, Apkarian AV: The cortical rhythms of chronic back pain. J Neurosci 2011, 31:13981-13990.
  • [9]Kobayashi Y, Kurata J, Sekiguchi M, Kokubun M, Akaishizawa T, Chiba Y, Konno S-i, Kikuchi S-i: Augmented cerebral activation by lumbar mechanical stimulus in chronic Low back pain patients: an fMRI study. Spine 2009, 34:2431-2436. 2410.1097/BRS.2430b2013e3181b2431fb2476
  • [10]Apkarian AV, Baliki MN, Geha PY: Towards a theory of chronic pain. Prog Neurobiol 2009, 87:81-97.
  • [11]Wasan AD, Loggia ML, Chen LQ, Napadow V, Kong J, Gollub RL: Neural correlates of chronic Low back pain measured by arterial spin labeling. Anesthesiology 2011, 115:364-374.
  • [12]Giesecke T, Gracely RH, Grant MA, Nachemson A, Petzke F, Williams DA, Clauw DJ: Evidence of augmented central pain processing in idiopathic chronic low back pain. Arthritis Rheum 2004, 50:613-623.
  • [13]Apkarian AV, Sosa Y, Krauss BR, Thomas PS, Fredrickson BE, Levy RE, Harden RN, Chialvo DR: Chronic pain patients are impaired on an emotional decision-making task. Pain 2004, 108:129-136.
  • [14]Baliki MN, Chialvo DR, Geha PY, Levy RM, Harden RN, Parrish TB, Apkarian AV: Chronic pain and the emotional brain: specific brain activity associated with spontaneous fluctuations of intensity of chronic back pain. J Neurosci 2006, 26:12165-12173.
  • [15]Loggia ML, Kim J, Gollub RL, Vangel MG, Kirsch I, Kong J, Wasan AD, Napadow V: Default mode network connectivity encodes clinical pain: an arterial spin labeling study. Pain 2013, 154:24-33.
  • [16]Apkarian AV, Sosa Y, Sonty S, Levy RM, Harden RN, Parrish TB, Gitelman DR: Chronic back pain is associated with decreased prefrontal and thalamic gray matter density. J Neurosci 2004, 24:10410-10415.
  • [17]Flor H: Cortical reorganisation and chronic pain: implications for rehabilitation. J Rehabil Med 2003, 41(Suppl):66-72.
  • [18]Schmidt-Wilcke T, Leinisch E, Gänssbauer S, Draganski B, Bogdahn U, Altmeppen J, May A: Affective components and intensity of pain correlate with structural differences in gray matter in chronic back pain patients. Pain 2006, 125:89-97.
  • [19]Baliki MN, Schnitzer TJ, Bauer WR, Apkarian AV: Brain morphological signatures for chronic pain. PLoS One 2011, 6:e26010.
  • [20]May A: Chronic pain may change the structure of the brain. Pain 2008, 137:7-15.
  • [21]Henry DE, Chiodo AE, Yang W: Central nervous system reorganization in a variety of chronic pain states: a review. Pm R 2011, 3:1116-1125.
  • [22]Seminowicz DA, Wideman TH, Naso L, Hatami-Khoroushahi Z, Fallatah S, Ware MA, Jarzem P, Bushnell MC, Shir Y, Ouellet JA, Stone LS: Effective treatment of chronic low back pain in humans reverses abnormal brain anatomy and function. J Neurosci 2011, 31:7540-7550.
  • [23]Baliki MN, Petre B, Torbey S, Herrmann KM, Huang L, Schnitzer TJ, Fields HL, Apkarian AV: Corticostriatal functional connectivity predicts transition to chronic back pain. Nat Neurosci 2012.
  • [24]Jensen K, Srinivasan P, Spaeth R, Tan Y, Kosek E, Petzke F, Carville S, Fransson P, Marcus H, Williams SC, et al.: Overlapping structural and functional brain changes in patients with long-term exposure to fibromyalgia. Arthritis & Rheumatism 2013. In press
  • [25]Buckner RL, Sepulcre J, Talukdar T, Krienen FM, Liu H, Hedden T, Andrews-Hanna JR, Sperling RA, Johnson KA: Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer's disease. J Neurosci 2009, 29:1860-1873.
  • [26]Sepulcre J, Liu H, Talukdar T, Martincorena I, Yeo BT, Buckner RL: The organization of local and distant functional connectivity in the human brain. PLoS Comput Biol 2010, 6:e1000808.
  • [27]Werneke MW, Hart DL: Categorizing patients with occupational low back pain by use of the Quebec task force classification system versus pain pattern classification procedures: discriminant and predictive validity. Phys Ther 2004, 84:243-254.
  • [28]Beck AT, Ward CH, Mendelson M, Mock J, Erbaugh J: An inventory for measuring depression. Arch Gen Psychiatry 1961, 4:561-571.
  • [29]Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME: The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA 2005, 102:9673-9678.
  • [30]Saad ZS, Gotts SJ, Murphy K, Chen G, Jo HJ, Martin A, Cox RW: Trouble at rest: how correlation patterns and group differences become distorted after global signal regression. Brain Connect 2012, 2:25-32.
  • [31]Dale AM, Fischl B, Sereno MI: Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage 1999, 9:179-194.
  • [32]Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, van der Kouwe A, Killiany R, Kennedy D, Klaveness S, et al.: Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 2002, 33:341-355.
  • [33]Fischl B, Sereno MI, Dale AM: Cortical surface-based analysis. II: inflation, flattening, and a surface-based coordinate system. Neuroimage 1999, 9:195-207.
  • [34]Penfield W, Rasmussen T: The cerebral cortex of Man. New York: Macmillan; 1955.
  • [35]Salat DH, Buckner RL, Snyder AZ, Greve DN, Desikan RS, Busa E, Morris JC, Dale AM, Fischl B: Thinning of the cerebral cortex in aging. Cereb Cortex 2004, 14:721-730.
  • [36]Kuperberg GR, Broome MR, McGuire PK, David AS, Eddy M, Ozawa F, Goff D, West WC, Williams SC, van der Kouwe AJ, et al.: Regionally localized thinning of the cerebral cortex in schizophrenia. Arch Gen Psychiatry 2003, 60:878-888.
  • [37]Bushnell MC, Duncan GH, Hofbauer RK, Ha B, Chen JI, Carrier B: Pain perception: is there a role for primary somatosensory cortex? Proc Natl Acad Sci USA 1999, 96:7705-7709.
  • [38]Kong J, White NS, Kwong KK, Vangel MG, Rosman IS, Gracely RH, Gollub RL: Using fMRI to dissociate sensory encoding from cognitive evaluation of heat pain intensity. Hum Brain Mapp 2006, 27:715-721.
  • [39]Kong J, Loggia ML, Zyloney C, Tu P, Laviolette P, Gollub RL: Exploring the brain in pain: activations, deactivations and their relation. Pain 2010, 148:257-267. PMID: 20005043
  • [40]Flor H, Braun C, Elbert T, Birbaumer N: Extensive reorganization of primary somatosensory cortex in chronic back pain patients. Neurosci Lett 1997, 224:5-8.
  • [41]Biswal B, Yetkin FZ, Haughton VM, Hyde JS: Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 1995, 34:537-541.
  • [42]Raichle ME, Mintun MA: Brain work and brain imaging. Annu Rev Neurosci 2006, 29:449-476.
  • [43]Fox MD, Raichle ME: Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 2007, 8:700-711.
  • [44]Van Dijk KR, Hedden T, Venkataraman A, Evans KC, Lazar SW, Buckner RL: Intrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimization. J Neurophysiol 2010, 103:297-321.
  • [45]Erpelding N, Moayedi M, Davis KD: Cortical thickness correlates of pain and temperature sensitivity. Pain 2012, 153:1602-1609.
  • [46]Teutsch S, Herken W, Bingel U, Schoell E, May A: Changes in brain gray matter due to repetitive painful stimulation. Neuroimage 2008, 42:845-849.
  • [47]Davis KD, Moayedi M: Central Mechanisms of Pain Revealed Through Functional and Structural MRI. J Neuroimmune Pharmacol 2013, 8(3):518-534.
  • [48]Ung H, Brown JE, Johnson KA, Younger J, Hush J, Mackey S: Multivariate classification of structural MRI data detects chronic Low back pain. Cereb Cortex 2012.
  • [49]Feldman DE, Brecht M: Map plasticity in somatosensory cortex. Science 2005, 310:810-815.
  • [50]Eto K, Wake H, Watanabe M, Ishibashi H, Noda M, Yanagawa Y, Nabekura J: Inter-regional contribution of enhanced activity of the primary somatosensory cortex to the anterior cingulate cortex accelerates chronic pain behavior. J Neurosci 2011, 31:7631-7636.
  • [51]Gaser C, Schlaug G: Brain structures differ between musicians and non-musicians. J Neurosci 2003, 23:9240-9245.
  • [52]Draganski B, Gaser C, Busch V, Schuierer G, Bogdahn U, May A: Neuroplasticity: changes in grey matter induced by training. Nature 2004, 427:311-312.
  • [53]May A, Hajak G, Ganssbauer S, Steffens T, Langguth B, Kleinjung T, Eichhammer P: Structural brain alterations following 5 days of intervention: dynamic aspects of neuroplasticity. Cereb Cortex 2007, 17:205-210.
  • [54]DaSilva AF, Granziera C, Snyder J, Hadjikhani N: Thickening in the somatosensory cortex of patients with migraine. Neurology 2007, 69:1990-1995.
  • [55]Schaechter JD, Moore CI, Connell BD, Rosen BR, Dijkhuizen RM: Structural and functional plasticity in the somatosensory cortex of chronic stroke patients. Brain 2006, 129:2722-2733.
  • [56]Gage FH: Neurogenesis in the adult brain. J Neurosci 2002, 22:612-613.
  • [57]Puta C, Schulz B, Schoeler S, Magerl W, Gabriel B, Gabriel HH, Miltner WH, Weiss T: Enhanced sensitivity to punctate painful stimuli in female patients with chronic low back pain. BMC Neurol 2012, 12:98. BioMed Central Full Text
  • [58]Neziri AY, Curatolo M, Limacher A, Nuesch E, Radanov B, Andersen OK, Arendt-Nielsen L, Juni P: Ranking of parameters of pain hypersensitivity according to their discriminative ability in chronic low back pain. Pain 2012, 153:2083-2091.
  • [59]Kleinbohl D, Holzl R, Moltner A, Rommel C, Weber C, Osswald PM: Psychophysical measures of sensitization to tonic heat discriminate chronic pain patients. Pain 1999, 81:35-43.
  • [60]Flor H, Diers M, Birbaumer N: Peripheral and electrocortical responses to painful and non-painful stimulation in chronic pain patients, tension headache patients and healthy controls. Neurosci Lett 2004, 361:147-150.
  • [61]Balague F, Mannion AF, Pellise F, Cedraschi C: Non-specific low back pain. Lancet 2012, 379:482-491.
  • [62]Taylor KS, Anastakis DJ, Davis KD: Cutting your nerve changes your brain. Brain 2009, 132:3122-3133.
  • [63]Staud R: Evidence for shared pain mechanisms in osteoarthritis, low back pain, and fibromyalgia. Curr Rheumatol Rep 2011, 13:513-520.
  • [64]Schweinhardt P, Kalk N, Wartolowska K, Chessell I, Wordsworth P, Tracey I: Investigation into the neural correlates of emotional augmentation of clinical pain. Neuroimage 2008, 40:759-766.
  • [65]Ceko M, Fitzcharles MA, Bushnell MC, Schweinhardt P: Cerebral grey and white matter changes in fibromyalgia depend on patients’ age. In 14th World Congress on Pain. Milan, Italy; 2012.
  • [66]Craig AD: Pain mechanisms: labeled lines versus convergence in central processing. Annu Rev Neurosci 2003, 26:1-30.
  • [67]Tracey I, Mantyh PW: The cerebral signature for pain perception and its modulation. Neuron 2007, 55:377-391.
  • [68]Davidson RJ, McEwen BS: Social influences on neuroplasticity: stress and interventions to promote well-being. Nat Neurosci 2012, 15:689-695.
  • [69]Kim MJ, Loucks RA, Palmer AL, Brown AC, Solomon KM, Marchante AN, Whalen PJ: The structural and functional connectivity of the amygdala: from normal emotion to pathological anxiety. Behav Brain Res 2011, 223:403-410.
  • [70]Younger JW, Chu LF, D'Arcy NT, Trott KE, Jastrzab LE, Mackey SC: Prescription opioid analgesics rapidly change the human brain. Pain 2011, 152:1803-1810.
  • [71]Faria AV, Joel SE, Zhang Y, Oishi K, van Zjil PC, Miller MI, Pekar JJ, Mori S: Atlas-based analysis of resting-state functional connectivity: evaluation for reproducibility and multi-modal anatomy-function correlation studies. Neuroimage 2012, 61:613-621.
  • [72]Zuo XN, Kelly C, Adelstein JS, Klein DF, Castellanos FX, Milham MP: Reliable intrinsic connectivity networks: test-retest evaluation using ICA and dual regression approach. Neuroimage 2010, 49:2163-2177.
  • [73]Shehzad Z, Kelly AM, Reiss PT, Gee DG, Gotimer K, Uddin LQ, Lee SH, Margulies DS, Roy AK, Biswal BB, et al.: The resting brain: unconstrained yet reliable. Cereb Cortex 2009, 19:2209-2229.
  文献评价指标  
  下载次数:29次 浏览次数:30次