期刊论文详细信息
Molecular Neurodegeneration
Axonal BACE1 dynamics and targeting in hippocampal neurons: a role for Rab11 GTPase
Gopal Thinakaran1  Robert Vassar2  Vytautas P Bindokas4  Jack Waters3  Jelita Roseman5  Kulandaivelu S Vetrivel5  Sean Riordan2  Celia G Fernandez1  Virginie Buggia-Prévot5 
[1] Committee on Neurobiology, The University of Chicago, Chicago, IL 60637, USA;Department of Cell and Molecular Biology, Northwestern University, Chicago, IL 60611, USA;Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;Department Neurobiology, Pharmacology and Physiology, The University of Chicago, Chicago, IL 60637, USA;Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
关键词: Recycling endosome;    Axonal transport;    Axonal sorting;    Transcytosis;    Rab11;    BACE1;   
Others  :  861927
DOI  :  10.1186/1750-1326-9-1
 received in 2013-11-22, accepted in 2013-12-22,  发布年份 2014
PDF
【 摘 要 】

Background

BACE1 is one of the two enzymes that cleave amyloid precursor protein to generate Alzheimer's disease (AD) beta amyloid peptides. It is widely believed that BACE1 initiates APP processing in endosomes, and in the brain this cleavage is known to occur during axonal transport of APP. In addition, BACE1 accumulates in dystrophic neurites surrounding brain senile plaques in individuals with AD, suggesting that abnormal accumulation of BACE1 at presynaptic terminals contributes to pathogenesis in AD. However, only limited information is available on BACE1 axonal transport and targeting.

Results

By visualizing BACE1-YFP dynamics using live imaging, we demonstrate that BACE1 undergoes bi-directional transport in dynamic tubulo-vesicular carriers along axons in cultured hippocampal neurons and in acute hippocampal slices of transgenic mice. In addition, a subset of BACE1 is present in larger stationary structures, which are active presynaptic sites. In cultured neurons, BACE1-YFP is preferentially targeted to axons over time, consistent with predominant in vivo localization of BACE1 in presynaptic terminals. Confocal analysis and dual-color live imaging revealed a localization and dynamic transport of BACE1 along dendrites and axons in Rab11-positive recycling endosomes. Impairment of Rab11 function leads to a diminution of total and endocytosed BACE1 in axons, concomitant with an increase in the soma. Together, these results suggest that BACE1 is sorted to axons in endosomes in a Rab11-dependent manner.

Conclusion

Our results reveal novel information on dynamic BACE1 transport in neurons, and demonstrate that Rab11-GTPase function is critical for axonal sorting of BACE1. Thus, we suggest that BACE1 transcytosis in endosomes contributes to presynaptic BACE1 localization.

【 授权许可】

   
2014 Buggia-Prévot et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140725005325653.pdf 3107KB PDF download
142KB Image download
125KB Image download
262KB Image download
172KB Image download
215KB Image download
200KB Image download
202KB Image download
【 图 表 】

【 参考文献 】
  • [1]Vassar R, et al.: Beta-secretase cleavage of Alzheimer's amyloid precursor protein by the transmembrane aspartic protease BACE. Science 1999, 286(5440):735-741.
  • [2]Sinha S, et al.: Purification and cloning of amyloid precursor protein beta-secretase from human brain. Nature 1999, 402(6761):537-540.
  • [3]Yan R, et al.: Membrane-anchored aspartyl protease with Alzheimer's disease beta-secretase activity. Nature 1999, 402(6761):533-537.
  • [4]Hussain I, et al.: Identification of a novel aspartic protease (Asp 2) as beta-secretase. Mol Cell Neurosci 1999, 14(6):419-427.
  • [5]Lin X, et al.: Human aspartic protease memapsin 2 cleaves the beta-secretase site of beta-amyloid precursor protein. Proc Natl Acad Sci U S A 2000, 97(4):1456-1460.
  • [6]Thinakaran G, Koo EH: Amyloid precursor protein trafficking, processing, and function. J Biol Chem 2008, 283(44):29615-29619.
  • [7]Mullan M, et al.: A pathogenic mutation for probable Alzheimer's disease in the APP gene at the N-terminus of beta-amyloid. Nat Genet 1992, 1(5):345-347.
  • [8]Citron M, et al.: Mutation of the beta-amyloid precursor protein in familial Alzheimer's disease increases beta-protein production. Nature 1992, 360(6405):672-674.
  • [9]Cai XD, Golde TE, Younkin SG: Release of excess amyloid beta protein from a mutant amyloid beta protein precursor. Science 1993, 259(5094):514-516.
  • [10]Jonsson T, et al.: A mutation in APP protects against Alzheimer's disease and age-related cognitive decline. Nature 2012, 48:96-99.
  • [11]Rajendran L, Annaert W: Membrane Trafficking Pathways in Alzheimer's Disease. Traffic 2012, 13(6):759-770.
  • [12]Haass C, et al.: Trafficking and proteolytic processing of APP. In The biology of Alzheimer disease. Edited by Selkoe DJ, Mandelkow E, Holtzman DM. Cold spring harbor, New York: Cold spring harbor laboratory press; 2012:205-229.
  • [13]Huse JT, et al.: Maturation and endosomal targeting of beta-site amyloid precursor protein-cleaving enzyme. The Alzheimer's disease beta-secretase. J Biol Chem 2000, 275(43):33729-33737.
  • [14]Chia PZ, et al.: Intracellular Itinerary of Internalised beta-Secretase, BACE1, and Its Potential Impact on beta-Amyloid Peptide Biogenesis. Traffic 2013, 14(9):997-1013.
  • [15]He X, et al.: GGA proteins mediate the recycling pathway of memapsin 2 (BACE). J Biol Chem 2005, 280(12):11696-11703.
  • [16]Wahle T, et al.: GGA1 is expressed in the human brain and affects the generation of amyloid beta-peptide. J Neurosci 2006, 26(49):12838-12846.
  • [17]Tesco G, et al.: Depletion of GGA3 stabilizes BACE and enhances beta-secretase activity. Neuron 2007, 54(5):721-737.
  • [18]Rajendran L, et al.: Efficient inhibition of the Alzheimer's disease beta-secretase by membrane targeting. Science 2008, 320(5875):520-523.
  • [19]Cirrito JR, et al.: Synaptic activity regulates interstitial fluid amyloid-beta levels in vivo. Neuron 2005, 48(6):913-922.
  • [20]Cirrito JR, et al.: Endocytosis is required for synaptic activity-dependent release of amyloid-beta in vivo. Neuron 2008, 58(1):42-51.
  • [21]Das U, et al.: Activity-Induced Convergence of APP and BACE-1 in Acidic Microdomains via an Endocytosis-Dependent Pathway. Neuron 2013, 79(3):447-460.
  • [22]Lasiecka ZM, Winckler B: Mechanisms of polarized membrane trafficking in neurons - Focusing in on endosomes. Mol Cell Neurosci 2011, 48(4):278-287.
  • [23]Buxbaum JD, et al.: Alzheimer amyloid protein precursor in the rat hippocampus: transport and processing through the perforant path. J Neurosci 1998, 18(23):9629-9637.
  • [24]Lazarov O, et al.: Evidence that synaptically released beta-amyloid accumulates as extracellular deposits in the hippocampus of transgenic mice. J Neurosci 2002, 22(22):9785-9793.
  • [25]Sheng JG, Price DL, Koliatsos VE: Disruption of corticocortical connections ameliorates amyloid burden in terminal fields in a transgenic model of Abeta amyloidosis. J Neurosci 2002, 22(22):9794-9799.
  • [26]Harris JA, et al.: Transsynaptic progression of amyloid-beta-induced neuronal dysfunction within the entorhinal-hippocampal network. Neuron 2010, 68(3):428-441.
  • [27]Sokolow S, et al.: Preferential accumulation of amyloid-beta in presynaptic glutamatergic terminals (VGluT1 and VGluT2) in Alzheimer's disease cortex. Neurobiol Dis 2012, 45(1):381-387.
  • [28]Laird FM, et al.: BACE1, a major determinant of selective vulnerability of the brain to amyloid-beta amyloidogenesis, is essential for cognitive, emotional, and synaptic functions. J Neurosci 2005, 25(50):11693-11709.
  • [29]Goldsbury C, et al.: Inhibition of APP trafficking by tau protein does not increase the generation of amyloid-beta peptides. Traffic 2006, 7(7):873-888.
  • [30]Zhao J, et al.: Beta-site amyloid precursor protein cleaving enzyme 1 levels become elevated in neurons around amyloid plaques: implications for Alzheimer's disease pathogenesis. J Neurosci 2007, 27(14):3639-3649.
  • [31]Sannerud R, et al.: ADP ribosylation factor 6 (ARF6) controls amyloid precursor protein (APP) processing by mediating the endosomal sorting of BACE1. Proc Natl Acad Sci U S A 2011, 108(34):E559-E568.
  • [32]Deng M, et al.: Increased Expression of Reticulon 3 in Neurons Leads to Reduced Axonal Transport of beta Site Amyloid Precursor Protein-cleaving Enzyme 1. J Biol Chem 2013, 288(42):30236-30245.
  • [33]Kandalepas PC, et al.: The Alzheimer's beta-secretase BACE1 localizes to normal presynaptic terminals and to dystrophic presynaptic terminals surrounding amyloid plaques. Acta Neuropathol 2013, 126(3):329-352.
  • [34]Buggia-Prévot V, et al.: A function for EHD family proteins in unidirectional retrograde dendritic transport of BACE1 and Alzheimer's disease Aβ production. Cell Rep 2013, 5(6):1552-1563.
  • [35]Wu J, et al.: Arc/Arg3.1 Regulates an Endosomal Pathway Essential for Activity-Dependent beta-Amyloid Generation. Cell 2011, 147(3):615-628.
  • [36]Lewis TL Jr, et al.: Myosin-dependent targeting of transmembrane proteins to neuronal dendrites. Nat Neurosci 2009, 12(5):568-576.
  • [37]Prekeris R, Foletti DL, Scheller RH: Dynamics of tubulovesicular recycling endosomes in hippocampal neurons. J Neurosci 1999, 19(23):10324-10337.
  • [38]Balaji J, Ryan TA: Single-vesicle imaging reveals that synaptic vesicle exocytosis and endocytosis are coupled by a single stochastic mode. Proc Natl Acad Sci U S A 2007, 104(51):20576-20581.
  • [39]Sonnichsen B, et al.: Distinct membrane domains on endosomes in the recycling pathway visualized by multicolor imaging of Rab4, Rab5, and Rab11. J Cell Biol 2000, 149(4):901-914.
  • [40]Park M, et al.: Plasticity-induced growth of dendritic spines by exocytic trafficking from recycling endosomes. Neuron 2006, 52(5):817-830.
  • [41]Ascano M, et al.: Axonal targeting of Trk receptors via transcytosis regulates sensitivity to neurotrophin responses. J Neurosci 2009, 29(37):11674-11685.
  • [42]Kawauchi T, et al.: Rab GTPases-dependent endocytic pathways regulate neuronal migration and maturation through N-cadherin trafficking. Neuron 2010, 67(4):588-602.
  • [43]Sekine-Aizawa Y, Huganir RL: Imaging of receptor trafficking by using alpha-bungarotoxin-binding-site-tagged receptors. Proc Natl Acad Sci U S A 2004, 101(49):17114-17119.
  • [44]Darstein M, et al.: Distribution of kainate receptor subunits at hippocampal mossy fiber synapses. J Neurosci 2003, 23(22):8013-8019.
  • [45]Huyghe D, et al.: Endocytosis of the glutamate receptor subunit GluK3 controls polarized trafficking. J Neurosci 2011, 31(32):11645-11654.
  • [46]Martin S, et al.: Bidirectional regulation of kainate receptor surface expression in hippocampal neurons. J Biol Chem 2008, 283(52):36435-36440.
  • [47]Kuhn PH, et al.: Secretome protein enrichment identifies physiological BACE1 protease substrates in neurons. EMBO J 2012, 31(14):3157-3168.
  • [48]Zhou L, et al.: The neural cell adhesion molecules L1 and CHL1 are cleaved by BACE1 protease in vivo. J Biol Chem 2012, 287(31):25927-25940.
  • [49]Yap CC, et al.: The somatodendritic endosomal regulator NEEP21 facilitates axonal targeting of L1/NgCAM. J Cell Biol 2008, 180(4):827-842.
  • [50]Bel C, et al.: Axonal targeting of Caspr2 in hippocampal neurons via selective somatodendritic endocytosis. J Cell Sci 2009, 122(Pt 18):3403-3413.
  • [51]Udayar V, et al.: A paired RNAi and RabGAP overexpression screen identifies Rab11 as a regulator of β-amyloid production. Cell Rep 2013, 5(6):1536-1551.
  • [52]Li X, et al.: Aberrant Rab11-dependent trafficking of the neuronal glutamate transporter EAAC1 causes oxidative stress and cell death in Huntington's disease. J Neurosci 2010, 30(13):4552-4561.
  • [53]Ren M, et al.: Hydrolysis of GTP on rab11 is required for the direct delivery of transferrin from the pericentriolar recycling compartment to the cell surface but not from sorting endosomes. Proc Natl Acad Sci U S A 1998, 95(11):6187-6192.
  • [54]Gossen M, Bujard H: Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci U S A 1992, 89(12):5547-5551.
  • [55]Vetrivel KS, et al.: Localization and regional distribution of p23/TMP21 in the brain. Neurobiol Dis 2008, 32(1):37-49.
  • [56]Gong P, et al.: Transgenic neuronal overexpression reveals that stringently regulated p23 expression is critical for coordinated movement in mice. Mol Neurodegener 2011, 6:87. BioMed Central Full Text
  • [57]Kaech S, Banker G: Culturing hippocampal neurons. Nat Protoc 2006, 1(5):2406-2415.
  • [58]Ryan TA, et al.: The kinetics of synaptic vesicle recycling measured at single presynaptic boutons. Neuron 1993, 11(4):713-724.
  • [59]Forster B, et al.: Complex wavelets for extended depth-of-field: a new method for the fusion of multichannel microscopy images. Microsc Res Tech 2004, 65(1–2):33-42.
  • [60]Rasband WS: ImageJ. Bethesda, Maryland, USA: U. S. National Institutes of Health; http://imagej.nih.gov/ij/ webcite, 1997–2012
  • [61]Sampo B, et al.: Two distinct mechanisms target membrane proteins to the axonal surface. Neuron 2003, 37(4):611-624.
  • [62]Bolte S, Cordelieres FP: A guided tour into subcellular colocalization analysis in light microscopy. J Microsc 2006, 224(Pt 3):213-232.
  文献评价指标  
  下载次数:50次 浏览次数:33次