期刊论文详细信息
Retrovirology
Interactions between prostaglandins, leukotrienes and HIV-1: Possible implications for the central nervous system
Michel J Tremblay2  Sylvie Méthot1  Corinne Barat1  Jonathan Bertin1 
[1] Centre de Recherche en Infectiologie, Centre Hospitalier Universitaire de Québec - CHUL, 2705 boul. Laurier, Québec (QC), Canada, G1V 4G2;Département de Microbiologie-Infectiologie et Immunologie, Faculté de médecine, Université Laval, Québec, Canada
关键词: Central Nervous System;    5-LO;    COX-2;    NS-398;    Leukotrienes;    Prostaglandins;    Eicosanoids;    HIV-1;   
Others  :  1209366
DOI  :  10.1186/1742-4690-9-4
 received in 2011-10-26, accepted in 2012-01-11,  发布年份 2012
PDF
【 摘 要 】

In HIV-1-infected individuals, there is often discordance between viremia in peripheral blood and viral load found in the central nervous system (CNS). Although the viral burden is often lower in the CNS compartment than in the plasma, neuroinflammation is present in most infected individuals, albeit attenuated by the current combined antiretroviral therapy. The HIV-1-associated neurological complications are thought to result not only from direct viral replication, but also from the subsequent neuroinflammatory processes. The eicosanoids - prostanoids and leukotrienes - are known as potent inflammatory lipid mediators. They are often present in neuroinflammatory diseases, notably HIV-1 infection. Their exact modulatory role in HIV-1 infection is, however, still poorly understood, especially in the CNS compartment. Nonetheless, a handful of studies have provided evidence as to how these lipid mediators can modulate HIV-1 infection. This review summarizes findings indicating how eicosanoids may influence the progression of neuroAIDS.

【 授权许可】

   
2012 Bertin et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150602100210208.pdf 557KB PDF download
Figure 1. 67KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]Davis LE, Hjelle BL, Miller VE, Palmer DL, Llewellyn AL, Merlin TL, Young SA, Mills RG, Wachsman W, Wiley CA: Early viral brain invasion in iatrogenic human immunodeficiency virus infection. Neurology 1992, 42:1736-1739.
  • [2]Kraft-Terry SD, Stothert AR, Buch S, Gendelman HE: HIV-1 neuroimmunity in the era of antiretroviral therapy. Neurobiol Dis 2010, 37:542-548.
  • [3]Antinori A, Arendt G, Becker JT, Brew BJ, Byrd DA, Cherner M, Clifford DB, Cinque P, Epstein LG, Goodkin K, Gisslen M, Grant I, Heaton RK, Joseph J, Marder K, Marra CM, McArthur JC, Nunn M, Price RW, Pulliam L, Robertson KR, Sacktor N, Valcour V, Wojna VE: Updated research nosology for HIV-associated neurocognitive disorders. Neurology 2007, 69:1789-1799.
  • [4]Evers S, Rahmann A, Schwaag S, Frese A, Reichelt D, Husstedt IW: Prevention of AIDS dementia by HAART does not depend on cerebrospinal fluid drug penetrance. AIDS Res Hum Retroviruses 2004, 20:483-491.
  • [5]Wright E: Neurocognitive impairment and neuroCART. Curr Opin HIV AIDS 2011, 6:303-308.
  • [6]Ciccarelli N, Fabbiani M, Di Giambenedetto S, Fanti I, Baldonero E, Bracciale L, Tamburrini E, Cauda R, De Luca A, Silveri MC: Efavirenz associated with cognitive disorders in otherwise asymptomatic HIV-infected patients. Neurology 2011, 76:1403-1409.
  • [7]Lisi L, Tramutola A, De Luca A, Navarra P, Dello Russo C: Modulatory effects of the CCR5 antagonist maraviroc on microglial pro-inflammatory activation elicited by gp120. J Neurochem 2011, 120:106-114.
  • [8]Canestri A, Lescure FX, Jaureguiberry S, Moulignier A, Amiel C, Marcelin AG, Peytavin G, Tubiana R, Pialoux G, Katlama C: Discordance between cerebral spinal fluid and plasma HIV replication in patients with neurological symptoms who are receiving suppressive antiretroviral therapy. Clin Infect Dis 2010, 50:773-778.
  • [9]Christo PP, Greco DB, Aleixo AW, Livramento JA: HIV-1 RNA levels in cerebrospinal fluid and plasma and their correlation with opportunistic neurological diseases in a Brazilian AIDS reference hospital. Arq Neuropsiquiatr 2005, 63:907-913.
  • [10]De Luca A, Ciancio BC, Larussa D, Murri R, Cingolani A, Rizzo MG, Giancola ML, Ammassari A, Ortona L: Correlates of independent HIV-1 replication in the CNS and of its control by antiretrovirals. Neurology 2002, 59:342-347.
  • [11]Price RW, Spudich S: Antiretroviral therapy and central nervous system HIV type 1 infection. J Infect Dis 2008, 197(Suppl 3):S294-306.
  • [12]Gisslen M, Fuchs D, Svennerholm B, Hagberg L: Cerebrospinal fluid viral load, intrathecal immunoactivation, and cerebrospinal fluid monocytic cell count in HIV-1 infection. J Acquir Immune Defic Syndr 1999, 21:271-276.
  • [13]Gisslen M, Svennerholm B, Norkrans G, Franzen C, Sall C, Svensson R, Oberg S, Hagberg L: Cerebrospinal fluid and plasma viral load in HIV-1-infected patients with various anti-retroviral treatment regimens. Scand J Infect Dis 2000, 32:365-369.
  • [14]Schnell G, Spudich S, Harrington P, Price RW, Swanstrom R: Compartmentalized human immunodeficiency virus type 1 originates from long-lived cells in some subjects with HIV-1-associated dementia. PLoS Pathog 2009, 5:e1000395.
  • [15]Witwer KW, Gama L, Li M, Bartizal CM, Queen SE, Varrone JJ, Brice AK, Graham DR, Tarwater PM, Mankowski JL, Zink MC, Clements JE: Coordinated regulation of SIV replication and immune responses in the CNS. PLoS One 2009, 4:e8129.
  • [16]Barber SA, Herbst DS, Bullock BT, Gama L, Clements JE: Innate immune responses and control of acute simian immunodeficiency virus replication in the central nervous system. J Neurovirol 2004, 10(Suppl 1):15-20.
  • [17]Hult B, Chana G, Masliah E, Everall I: Neurobiology of HIV. Int Rev Psychiatry 2008, 20:3-13.
  • [18]Ivey NS, MacLean AG, Lackner AA: Acquired immunodeficiency syndrome and the blood-brain barrier. J Neurovirol 2009, 15:111-122.
  • [19]Yadav A, Collman RG: CNS inflammation and macrophage/microglial biology associated with HIV-1 infection. J Neuroimmune Pharmacol 2009, 4:430-447.
  • [20]Gonzalez-Scarano F, Martin-Garcia J: The neuropathogenesis of AIDS. Nat Rev Immunol 2005, 5:69-81.
  • [21]Wu DT, Woodman SE, Weiss JM, McManus CM, D'Aversa TG, Hesselgesser J, Major EO, Nath A, Berman JW: Mechanisms of leukocyte trafficking into the CNS. J Neurovirol 2000, 6(Suppl 1):S82-85.
  • [22]Dohgu S, Banks WA: Lipopolysaccharide-enhanced transcellular transport of HIV-1 across the blood-brain barrier is mediated by the p38 mitogen-activated protein kinase pathway. Exp Neurol 2008, 210:740-749.
  • [23]Wang H, Sun J, Goldstein H: Human immunodeficiency virus type 1 infection increases the in vivo capacity of peripheral monocytes to cross the blood-brain barrier into the brain and the in vivo sensitivity of the blood-brain barrier to disruption by lipopolysaccharide. J Virol 2008, 82:7591-7600.
  • [24]Ancuta P, Kamat A, Kunstman KJ, Kim EY, Autissier P, Wurcel A, Zaman T, Stone D, Mefford M, Morgello S, Singer EJ, Wolinsky SM, Gabuzda D: Microbial translocation is associated with increased monocyte activation and dementia in AIDS patients. PLoS One 2008, 3:e2516.
  • [25]Strazza M, Pirrone V, Wigdahl B, Nonnemacher MR: Breaking down the barrier: the effects of HIV-1 on the blood-brain barrier. Brain Res 2011, 1399:96-115.
  • [26]Alexaki A, Liu Y, Wigdahl B: Cellular reservoirs of HIV-1 and their role in viral persistence. Curr HIV Res 2008, 6:388-400.
  • [27]Albright AV, Gonzalez-Scarano F: Microarray analysis of activated mixed glial (microglia) and monocyte-derived macrophage gene expression. J Neuroimmunol 2004, 157:27-38.
  • [28]Coisne C, Engelhardt B: Tight junctions in brain barriers during central nervous system inflammation. Antioxid Redox Signal 2011, 15:1285-1303.
  • [29]Chan WY, Kohsaka S, Rezaie P: The origin and cell lineage of microglia: new concepts. Brain Res Rev 2007, 53:344-354.
  • [30]Kaur C, Hao AJ, Wu CH, Ling EA: Origin of microglia. Microsc Res Tech 2001, 54:2-9.
  • [31]Monier A, Adle-Biassette H, Delezoide AL, Evrard P, Gressens P, Verney C: Entry and distribution of microglial cells in human embryonic and fetal cerebral cortex. J Neuropathol Exp Neurol 2007, 66:372-382.
  • [32]Cuadros MA, Navascues J: The origin and differentiation of microglial cells during development. Prog Neurobiol 1998, 56:173-189.
  • [33]Davoust N, Vuaillat C, Androdias G, Nataf S: From bone marrow to microglia: barriers and avenues. Trends Immunol 2008, 29:227-234.
  • [34]Buckner CM, Calderon TM, Willams DW, Belbin TJ, Berman JW: Characterization of monocyte maturation/differentiation that facilitates their transmigration across the blood-brain barrier and infection by HIV: implications for NeuroAIDS. Cell Immunol 2011, 267:109-123.
  • [35]McManus CM, Brosnan CF, Berman JW: Cytokine induction of MIP-1 alpha and MIP-1 beta in human fetal microglia. J Immunol 1998, 160:1449-1455.
  • [36]Matsumoto Y, Ohmori K, Fujiwara M: Microglial and astroglial reactions to inflammatory lesions of experimental autoimmune encephalomyelitis in the rat central nervous system. J Neuroimmunol 1992, 37:23-33.
  • [37]Matsumoto Y, Ohmori K, Fujiwara M: Immune regulation by brain cells in the central nervous system: microglia but not astrocytes present myelin basic protein to encephalitogenic T cells under in vivo-mimicking conditions. Immunology 1992, 76:209-216.
  • [38]Bauer J, Sminia T, Wouterlood FG, Dijkstra CD: Phagocytic activity of macrophages and microglial cells during the course of acute and chronic relapsing experimental autoimmune encephalomyelitis. J Neurosci Res 1994, 38:365-375.
  • [39]Lee SC, Liu W, Dickson DW, Brosnan CF, Berman JW: Cytokine production by human fetal microglia and astrocytes. Differential induction by lipopolysaccharide and IL-1 beta. J Immunol 1993, 150:2659-2667.
  • [40]Gorry PR, Bristol G, Zack JA, Ritola K, Swanstrom R, Birch CJ, Bell JE, Bannert N, Crawford K, Wang H, Schols D, De Clercq E, Kunstman K, Wolinsky SM, Gabuzda D: Macrophage tropism of human immunodeficiency virus type 1 isolates from brain and lymphoid tissues predicts neurotropism independent of coreceptor specificity. J Virol 2001, 75:10073-10089.
  • [41]Albright AV, Shieh JT, Itoh T, Lee B, Pleasure D, O'Connor MJ, Doms RW, Gonzalez-Scarano F: Microglia express CCR5, CXCR4, and CCR3, but of these, CCR5 is the principal coreceptor for human immunodeficiency virus type 1 dementia isolates. J Virol 1999, 73:205-213.
  • [42]Agrawal L, Maxwell CR, Peters PJ, Clapham PR, Liu SM, Mackay CR, Strayer DS: Complexity in human immunodeficiency virus type 1 (HIV-1) co-receptor usage: roles of CCR3 and CCR5 in HIV-1 infection of monocyte-derived macrophages and brain microglia. J Gen Virol 2009, 90:710-722.
  • [43]Aasa-Chapman MM, Aubin K, Williams I, McKnight A: Primary CCR5 only using HIV-1 isolates does not accurately represent the in vivo replicating quasi-species. Virology 2006, 351:489-496.
  • [44]Adle-Biassette H, Chretien F, Wingertsmann L, Hery C, Ereau T, Scaravilli F, Tardieu M, Gray F: Neuronal apoptosis does not correlate with dementia in HIV infection but is related to microglial activation and axonal damage. Neuropathol Appl Neurobiol 1999, 25:123-133.
  • [45]Jones MV, Bell JE, Nath A: Immunolocalization of HIV envelope gp120 in HIV encephalitis with dementia. Aids 2000, 14:2709-2713.
  • [46]Viviani B, Corsini E, Binaglia M, Galli CL, Marinovich M: Reactive oxygen species generated by glia are responsible for neuron death induced by human immunodeficiency virus-glycoprotein 120 in vitro. Neuroscience 2001, 107:51-58.
  • [47]Corasaniti MT, Bagetta G, Rotiroti D, Nistico G: The HIV envelope protein gp120 in the nervous system: interactions with nitric oxide, interleukin-1beta and nerve growth factor signalling, with pathological implications in vivo and in vitro. Biochem Pharmacol 1998, 56:153-156.
  • [48]Hudson L, Liu J, Nath A, Jones M, Raghavan R, Narayan O, Male D, Everall I: Detection of the human immunodeficiency virus regulatory protein tat in CNS tissues. J Neurovirol 2000, 6:145-155.
  • [49]Leone C, Le Pavec G, Meme W, Porcheray F, Samah B, Dormont D, Gras G: Characterization of human monocyte-derived microglia-like cells. Glia 2006, 54:183-192.
  • [50]Cherrier T, Suzanne S, Redel L, Calao M, Marban C, Samah B, Mukerjee R, Schwartz C, Gras G, Sawaya BE, Zeichner SL, Aunis D, Van Lint C, Rohr O: p21(WAF1) gene promoter is epigenetically silenced by CTIP2 and SUV39H1. Oncogene 2009, 28:3380-3389.
  • [51]Williams R, Bokhari S, Silverstein P, Pinson D, Kumar A, Buch S: Nonhuman primate models of NeuroAIDS. J Neurovirol 2008, 14:292-300.
  • [52]Gorry PR, Ong C, Thorpe J, Bannwarth S, Thompson KA, Gatignol A, Vesselingh SL, Purcell DF: Astrocyte infection by HIV-1: mechanisms of restricted virus replication, and role in the pathogenesis of HIV-1-associated dementia. Curr HIV Res 2003, 1:463-473.
  • [53]Vijaykumar TS, Nath A, Chauhan A: Chloroquine mediated molecular tuning of astrocytes for enhanced permissiveness to HIV infection. Virology 2008, 381:1-5.
  • [54]Canki M, Thai JN, Chao W, Ghorpade A, Potash MJ, Volsky DJ: Highly productive infection with pseudotyped human immunodeficiency virus type 1 (HIV-1) indicates no intracellular restrictions to HIV-1 replication in primary human astrocytes. J Virol 2001, 75:7925-7933.
  • [55]Thompson KA, Cherry CL, Bell JE, McLean CA: Brain Cell Reservoirs of Latent Virus in Presymptomatic HIV-Infected Individuals. Am J Pathol 2011, 179:1623-1629.
  • [56]Churchill MJ, Wesselingh SL, Cowley D, Pardo CA, McArthur JC, Brew BJ, Gorry PR: Extensive astrocyte infection is prominent in human immunodeficiency virus-associated dementia. Ann Neurol 2009, 66:253-258.
  • [57]Vincendeau M, Kramer S, Hadian K, Rothenaigner I, Bell J, Hauck SM, Bickel C, Nagel D, Kremmer E, Werner T, Leib-Mösch C, Brack-Werner R: Control of HIV replication in astrocytes by a family of highly conserved host proteins with a common Rev-interacting domain (Risp). AIDS 2010, 24:2433-2442.
  • [58]Wang Z, Trillo-Pazos G, Kim SY, Canki M, Morgello S, Sharer LR, Gelbard HA, Su ZZ, Kang DC, Brooks AI, Fisher PB, Volsky DJ: Effects of human immunodeficiency virus type 1 on astrocyte gene expression and function: potential role in neuropathogenesis. J Neurovirol 2004, 10(Suppl 1):25-32.
  • [59]Kim SY, Li J, Bentsman G, Brooks AI, Volsky DJ: Microarray analysis of changes in cellular gene expression induced by productive infection of primary human astrocytes: implications for HAD. J Neuroimmunol 2004, 157:17-26.
  • [60]Eugenin EA, Clements JE, Zink MC, Berman JW: Human immunodeficiency virus infection of human astrocytes disrupts blood-brain barrier integrity by a gap junction-dependent mechanism. J Neurosci 2011, 31:9456-9465.
  • [61]Wang T, Gong N, Liu J, Kadiu I, Kraft-Terry SD, Schlautman JD, Ciborowski P, Volsky DJ, Gendelman HE: HIV-1-infected astrocytes and the microglial proteome. J Neuroimmune Pharmacol 2008, 3:173-186.
  • [62]Radmark O, Samuelsson B: 5-Lipoxygenase: mechanisms of regulation. J Lipid Res 2009, 50(Suppl):S40-45.
  • [63]Borgeat P, Hamberg M, Samuelsson B: Transformation of arachidonic acid and homo-gamma-linolenic acid by rabbit polymorphonuclear leukocytes. Monohydroxy acids from novel lipoxygenases. J Biol Chem 1976, 251:7816-7820.
  • [64]Radmark O, Malmsten C, Samuelsson B: Leukotriene A4: enzymatic conversion to leukotriene C4. Biochem Biophys Res Commun 1980, 96:1679-1687.
  • [65]Mitchell JA, Akarasereenont P, Thiemermann C, Flower RJ, Vane JR: Selectivity of nonsteroidal antiinflammatory drugs as inhibitors of constitutive and inducible cyclooxygenase. Proc Natl Acad Sci USA 1993, 90:11693-11697.
  • [66]Seibert K, Masferrer JL: Role of inducible cyclooxygenase (COX-2) in inflammation. Receptor 1994, 4:17-23.
  • [67]Botting R, Ayoub SS: COX-3 and the mechanism of action of paracetamol/acetaminophen. Prostaglandins Leukot Essent Fatty Acids 2005, 72:85-87.
  • [68]Chandrasekharan NV, Dai H, Roos KL, Evanson NK, Tomsik J, Elton TS, Simmons DL: COX-3, a cyclooxygenase-1 variant inhibited by acetaminophen and other analgesic/antipyretic drugs: cloning, structure, and expression. Proc Natl Acad Sci USA 2002, 99:13926-13931.
  • [69]Chandrasekharan NV, Simmons DL: The cyclooxygenases. Genome Biol 2004, 5:241.
  • [70]Funk CD: Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 2001, 294:1871-1875.
  • [71]Smith WL, DeWitt DL, Garavito RM: Cyclooxygenases: structural, cellular, and molecular biology. Annu Rev Biochem 2000, 69:145-182.
  • [72]Cha YI, Solnica-Krezel L, DuBois RN: Fishing for prostanoids: deciphering the developmental functions of cyclooxygenase-derived prostaglandins. Dev Biol 2006, 289:263-272.
  • [73]Greenhough A, Smartt HJ, Moore AE, Roberts HR, Williams AC, Paraskeva C, Kaidi A: The COX-2/PGE2 pathway: key roles in the hallmarks of cancer and adaptation to the tumour microenvironment. Carcinogenesis 2009, 30:377-386.
  • [74]Scher JU, Pillinger MH: The anti-inflammatory effects of prostaglandins. J Investig Med 2009, 57:703-708.
  • [75]Surh YJ, Na HK, Park JM, Lee HN, Kim W, Yoon IS, Kim DD: 15-Deoxy-Delta(12,14)-prostaglandin J(2), an electrophilic lipid mediator of anti-inflammatory and pro-resolving signaling. Biochem Pharmacol 2011, 82:1335-1351.
  • [76]Samuelsson B: Leukotrienes: mediators of immediate hypersensitivity reactions and inflammation. Science 1983, 220:568-575.
  • [77]Peters-Golden M, Henderson WR Jr: Leukotrienes. N Engl J Med 2007, 357:1841-1854.
  • [78]Peters-Golden M, Canetti C, Mancuso P, Coffey MJ: Leukotrienes: underappreciated mediators of innate immune responses. J Immunol 2005, 174:589-594.
  • [79]Borgeat P, Samuelsson B: Arachidonic acid metabolism in polymorphonuclear leukocytes: unstable intermediate in formation of dihydroxy acids. Proc Natl Acad Sci USA 1979, 76:3213-3217.
  • [80]Hopkins NK, Oglesby TD, Bundy GL, Gorman RR: Biosynthesis and metabolism of 15-hydroperoxy-5,8,11,13-eicosatetraenoic acid by human umbilical vein endothelial cells. J Biol Chem 1984, 259:14048-14053.
  • [81]Humes JL, Opas EE, Galavage M, Soderman D, Bonney RJ: Regulation of macrophage eicosanoid production by hydroperoxy-and hydroxy-eicosatetraenoic acids. Biochem J 1986, 233:199-206.
  • [82]Naruhn S, Meissner W, Adhikary T, Kaddatz K, Klein T, Watzer B, Muller-Brusselbach S, Muller R: 15-hydroxyeicosatetraenoic acid is a preferential peroxisome proliferator-activated receptor beta/delta agonist. Mol Pharmacol 2010, 77:171-184.
  • [83]Chen GG, Xu H, Lee JF, Subramaniam M, Leung KL, Wang SH, Chan UP, Spelsberg TC: 15-hydroxy-eicosatetraenoic acid arrests growth of colorectal cancer cells via a peroxisome proliferator-activated receptor gamma-dependent pathway. Int J Cancer 2003, 107:837-843.
  • [84]Paruchuri S, Hallberg B, Juhas M, Larsson C, Sjolander A: Leukotriene D(4) activates MAPK through a Ras-independent but PKCepsilon-dependent pathway in intestinal epithelial cells. J Cell Sci 2002, 115:1883-1893.
  • [85]Sanchez-Galan E, Gomez-Hernandez A, Vidal C, Martin-Ventura JL, Blanco-Colio LM, Munoz-Garcia B, Ortega L, Egido J, Tunon J: Leukotriene B4 enhances the activity of nuclear factor-kappaB pathway through BLT1 and BLT2 receptors in atherosclerosis. Cardiovasc Res 2009, 81:216-225.
  • [86]Flamand N, Lefebvre J, Surette ME, Picard S, Borgeat P: Arachidonic acid regulates the translocation of 5-lipoxygenase to the nuclear membranes in human neutrophils. J Biol Chem 2006, 281:129-136.
  • [87]Flamand N, Surette ME, Picard S, Bourgoin S, Borgeat P: Cyclic AMP-mediated inhibition of 5-lipoxygenase translocation and leukotriene biosynthesis in human neutrophils. Mol Pharmacol 2002, 62:250-256.
  • [88]Singh RK, Gupta S, Dastidar S, Ray A: Cysteinyl leukotrienes and their receptors: molecular and functional characteristics. Pharmacology 2010, 85:336-349.
  • [89]Ciana P, Fumagalli M, Trincavelli ML, Verderio C, Rosa P, Lecca D, Ferrario S, Parravicini C, Capra V, Gelosa P, Guerrini U, Belcredito S, Cimino M, Sironi L, Tremoli E, Rovati GE, Martini C, Abbracchio MP: The orphan receptor GPR17 identified as a new dual uracil nucleotides/cysteinyl-leukotrienes receptor. Embo J 2006, 25:4615-4627.
  • [90]Maekawa A, Balestrieri B, Austen KF, Kanaoka Y: GPR17 is a negative regulator of the cysteinyl leukotriene 1 receptor response to leukotriene D4. Proc Natl Acad Sci USA 2009, 106:11685-11690.
  • [91]Breyer RM, Bagdassarian CK, Myers SA, Breyer MD: Prostanoid receptors: subtypes and signaling. Annu Rev Pharmacol Toxicol 2001, 41:661-690.
  • [92]Scher JU, Pillinger MH: 15d-PGJ2: the anti-inflammatory prostaglandin? Clin Immunol 2005, 114:100-109.
  • [93]Yamamoto N, Harada S, Nakashima H: Substances affecting the infection and replication of human immunodeficiency virus (HIV). AIDS Res 1986, 2(Suppl 1):S183-189.
  • [94]Ankel H, Turriziani O, Antonelli G: Prostaglandin A inhibits replication of human immunodeficiency virus during acute infection. J Gen Virol 1991, 72(Pt 11):2797-2800.
  • [95]Hughes-Fulford M, McGrath MS, Hanks D, Erickson S, Pulliam L: Effects of dimethyl prostaglandin A1 on herpes simplex virus and human immunodeficiency virus replication. Antimicrob Agents Chemother 1992, 36:2253-2258.
  • [96]Rozera C, Carattoli A, De Marco A, Amici C, Giorgi C, Santoro MG: Inhibition of HIV-1 replication by cyclopentenone prostaglandins in acutely infected human cells. Evidence for a transcriptional block. J Clin Invest 1996, 97:1795-1803.
  • [97]Thivierge M, Le Gouill C, Tremblay MJ, Stankova J, Rola-Pleszczynski M: Prostaglandin E2 induces resistance to human immunodeficiency virus-1 infection in monocyte-derived macrophages: downregulation of CCR5 expression by cyclic adenosine monophosphate. Blood 1998, 92:40-45.
  • [98]Hayes MM, Lane BR, King SR, Markovitz DM, Coffey MJ: Prostaglandin E(2) inhibits replication of HIV-1 in macrophages through activation of protein kinase A. Cell Immunol 2002, 215:61-71.
  • [99]Whitney JB, Asmal M, Geiben-Lynn R: Serpin induced antiviral activity of prostaglandin synthetase-2 against HIV-1 replication. PLoS One 2011, 6:e18589.
  • [100]Dumais N, Barbeau B, Olivier M, Tremblay MJ: Prostaglandin E2 Up-regulates HIV-1 long terminal repeat-driven gene activity in T cells via NF-kappaB-dependent and -independent signaling pathways. J Biol Chem 1998, 273:27306-27314.
  • [101]Boisvert M, Cote S, Vargas A, Pasvanis S, Bounou S, Barbeau B, Dumais N: PGJ2 antagonizes NF-kappaB-induced HIV-1 LTR activation in colonic epithelial cells. Virology 2008, 380:1-11.
  • [102]Kalantari P, Narayan V, Henderson AJ, Prabhu KS: 15-Deoxy-Delta12,14-prostaglandin J2 inhibits HIV-1 transactivating protein, Tat, through covalent modification. Faseb J 2009, 23:2366-2373.
  • [103]Bailie MB, Standiford TJ, Laichalk LL, Coffey MJ, Strieter R, Peters-Golden M: Leukotriene-deficient mice manifest enhanced lethality from Klebsiella pneumonia in association with decreased alveolar macrophage phagocytic and bactericidal activities. J Immunol 1996, 157:5221-5224.
  • [104]Chen N, Restivo A, Reiss CS: Leukotrienes play protective roles early during experimental VSV encephalitis. J Neuroimmunol 2001, 120:94-102.
  • [105]Demitsu T, Katayama H, Saito-Taki T, Yaoita H, Nakano M: Enhanced bactericidal activity of macrophages by exogenous leukotriene B4. Dermatologica 1989, 179(Suppl 1):129-130.
  • [106]Malaviya R, Abraham SN: Role of mast cell leukotrienes in neutrophil recruitment and bacterial clearance in infectious peritonitis. J Leukoc Biol 2000, 67:841-846.
  • [107]Medeiros AI, Sa-Nunes A, Soares EG, Peres CM, Silva CL, Faccioli LH: Blockade of endogenous leukotrienes exacerbates pulmonary histoplasmosis. Infect Immun 2004, 72:1637-1644.
  • [108]Thorsen S, Busch-Sorensen M, Sondergaard J: Reduced neutrophil production of leukotriene B4 associated with AIDS. Aids 1989, 3:651-653.
  • [109]Coffey MJ, Phare SM, Kazanjian PH, Peters-Golden M: 5-Lipoxygenase metabolism in alveolar macrophages from subjects infected with the human immunodeficiency virus. J Immunol 1996, 157:393-399.
  • [110]Coffey MJ, Phare SM, George S, Peters-Golden M, Kazanjian PH: Granulocyte colony-stimulating factor administration to HIV-infected subjects augments reduced leukotriene synthesis and anticryptococcal activity in neutrophils. J Clin Invest 1998, 102:663-670.
  • [111]Peters-Golden M, Coffey M: Role of leukotrienes in antimicrobial defense of the lung. J Lab Clin Med 1998, 132:251-257.
  • [112]Boudreau LH, Bertin J, Robichaud PP, Laflamme M, Ouellette RJ, Flamand N, Surette ME: Novel 5-lipoxygenase isoforms affect the biosynthesis of 5-lipoxygenase products. Faseb J 2011, 25:1097-1105.
  • [113]Flamand L, Borgeat P, Lalonde R, Gosselin J: Release of anti-HIV mediators after administration of leukotriene B4 to humans. J Infect Dis 2004, 189:2001-2009.
  • [114]Flamand L, Tremblay MJ, Borgeat P: Leukotriene B4 triggers the in vitro and in vivo release of potent antimicrobial agents. J Immunol 2007, 178:8036-8045.
  • [115]Yao Q, Frank M, Glynn M, Altman RD: Rheumatic manifestations in HIV-1 infected in-patients and literature review. Clin Exp Rheumatol 2008, 26:799-806.
  • [116]Cuellar ML: HIV infection-associated inflammatory musculoskeletal disorders. Rheum Dis Clin North Am 1998, 24:403-421.
  • [117]Berman A, Espinoza LR, Diaz JD, Aguilar JL, Rolando T, Vasey FB, Germain BF, Lockey RF: Rheumatic manifestations of human immunodeficiency virus infection. Am J Med 1988, 85:59-64.
  • [118]Calabrese LH, Kelley DM, Myers A, O'Connell M, Easley K: Rheumatic symptoms and human immunodeficiency virus infection. The influence of clinical and laboratory variables in a longitudinal cohort study. Arthritis Rheum 1991, 34:257-263.
  • [119]Pereira CF, Paridaen JT, Rutten K, Huigen MC, van de Bovenkamp M, Middel J, Beerens N, Berkhout B, Schuurman R, Marnett LJ, Verhoef J, Nottet HS: Aspirin-like molecules that inhibit human immunodeficiency virus 1 replication. Antiviral Res 2003, 58:253-263.
  • [120]Pereira CF, Paridaen JT, van de Bovenkamp M, Middel J, Verhoef J, Nottet HS: APHS can act synergically with clinically available HIV-1 reverse transcriptase and protease inhibitors and is active against several drug-resistant HIV-1 strains in vitro. J Antimicrob Chemother 2003, 51:1181-1189.
  • [121]Futaki N, Takahashi S, Yokoyama M, Arai I, Higuchi S, Otomo S: NS-398, a new anti-inflammatory agent, selectively inhibits prostaglandin G/H synthase/cyclooxygenase (COX-2) activity in vitro. Prostaglandins 1994, 47:55-59.
  • [122]Pettersen FO, Torheim EA, Dahm AE, Aaberge IS, Lind A, Holm M, Aandahl EM, Sandset PM, Tasken K, Kvale D: An exploratory trial of cyclooxygenase type 2 inhibitor in HIV-1 infection: downregulated immune activation and improved T cell-dependent vaccine responses. J Virol 2011, 85:6557-6566.
  • [123]Zhang D, Hu X, Qian L, Wilson B, Lee C, Flood P, Langenbach R, Hong JS: Prostaglandin E2 released from activated microglia enhances astrocyte proliferation in vitro. Toxicol Appl Pharmacol 2009, 238:64-70.
  • [124]Rademacher DJ, Kearn CS, Carrier EJ, Patel S, Delgado MA, Barkmeier A, Klick DE, Breese NM, Pfister SL, Nithipatikom K, Campbell WB, Hillard CJ: Production of hydroxyeicosatetraenoic acids and prostaglandins by a novel rat microglial cell line. J Neuroimmunol 2004, 149:130-141.
  • [125]Matsuo M, Hamasaki Y, Fujiyama F, Miyazaki S: Eicosanoids are produced by microglia, not by astrocytes, in rat glial cell cultures. Brain Res 1995, 685:201-204.
  • [126]Ballerini P, Di Iorio P, Ciccarelli R, Caciagli F, Poli A, Beraudi A, Buccella S, D'Alimonte I, D'Auro M, Nargi E, Patricelli P, Visini D, Traversa U: P2Y1 and cysteinyl leukotriene receptors mediate purine and cysteinyl leukotriene co-release in primary cultures of rat microglia. Int J Immunopathol Pharmacol 2005, 18:255-268.
  • [127]Minghetti L, Ajmone-Cat MA, De Berardinis MA, De Simone R: Microglial activation in chronic neurodegenerative diseases: roles of apoptotic neurons and chronic stimulation. Brain Res Brain Res Rev 2005, 48:251-256.
  • [128]Choi SH, Aid S, Bosetti F: The distinct roles of cyclooxygenase-1 and -2 in neuroinflammation: implications for translational research. Trends Pharmacol Sci 2009, 30:174-181.
  • [129]Lin TN, Wang Q, Simonyi A, Chen JJ, Cheung WM, He YY, Xu J, Sun AY, Hsu CY, Sun GY: Induction of secretory phospholipase A2 in reactive astrocytes in response to transient focal cerebral ischemia in the rat brain. J Neurochem 2004, 90:637-645.
  • [130]Bendani MK, Palluy O, Cook-Moreau J, Beneytout JL, Rigaud M, Vallat JM: Localization of 12-lipoxygenase mRNA in cultured oligodendrocytes and astrocytes by in situ reverse transcriptase and polymerase chain reaction. Neurosci Lett 1995, 189:159-162.
  • [131]Farooqui AA, Horrocks LA, Farooqui T: Modulation of inflammation in brain: a matter of fat. J Neurochem 2007, 101:577-599.
  • [132]Okubo M, Yamanaka H, Kobayashi K, Noguchi K: Leukotriene synthases and the receptors induced by peripheral nerve injury in the spinal cord contribute to the generation of neuropathic pain. Glia 2010, 58:599-610.
  • [133]Jeon SB, Ji KA, You HJ, Kim JH, Jou I, Joe EH: Nordihydroguaiaretic acid inhibits IFN-gamma-induced STAT tyrosine phosphorylation in rat brain astrocytes. Biochem Biophys Res Commun 2005, 328:595-600.
  • [134]Manev H, Uz T, Qu T: Early upregulation of hippocampal 5-lipoxygenase following systemic administration of kainate to rats. Restor Neurol Neurosci 1998, 12:81-85.
  • [135]Tomimoto H, Shibata M, Ihara M, Akiguchi I, Ohtani R, Budka H: A comparative study on the expression of cyclooxygenase and 5-lipoxygenase during cerebral ischemia in humans. Acta Neuropathol 2002, 104:601-607.
  • [136]Ohtsuki T, Matsumoto M, Hayashi Y, Yamamoto K, Kitagawa K, Ogawa S, Yamamoto S, Kamada T: Reperfusion induces 5-lipoxygenase translocation and leukotriene C4 production in ischemic brain. Am J Physiol 1995, 268:H1249-1257.
  • [137]Hoozemans JJ, Veerhuis R, Janssen I, van Elk EJ, Rozemuller AJ, Eikelenboom P: The role of cyclo-oxygenase 1 and 2 activity in prostaglandin E(2) secretion by cultured human adult microglia: implications for Alzheimer's disease. Brain Res 2002, 951:218-226.
  • [138]Temel SG, Kahveci Z: Cyclooxygenase-2 expression in astrocytes and microglia in human oligodendroglioma and astrocytoma. J Mol Histol 2009, 40:369-377.
  • [139]Carlson NG, Rojas MA, Redd JW, Tang P, Wood B, Hill KE, Rose JW: Cyclooxygenase-2 expression in oligodendrocytes increases sensitivity to excitotoxic death. J Neuroinflammation 2010, 7:25.
  • [140]Qin N, Zhang SP, Reitz TL, Mei JM, Flores CM: Cloning, expression, and functional characterization of human cyclooxygenase-1 splicing variants: evidence for intron 1 retention. J Pharmacol Exp Ther 2005, 315:1298-1305.
  • [141]Andreasson K: Emerging roles of PGE2 receptors in models of neurological disease. Prostaglandins Other Lipid Mediat 2010, 91:104-112.
  • [142]Griffin DE, Wesselingh SL, McArthur JC: Elevated central nervous system prostaglandins in human immunodeficiency virus-associated dementia. Ann Neurol 1994, 35:592-597.
  • [143]Heise CE, O'Dowd BF, Figueroa DJ, Sawyer N, Nguyen T, Im DS, Stocco R, Bellefeuille JN, Abramovitz M, Cheng R, Williams DL Jr, Zeng Z, Liu Q, Ma L, Clements MK, Coulombe N, Liu Y, Austin CP, George SR, O'Neill GP, Metters KM, Lynch KR, Evans JF: Characterization of the human cysteinyl leukotriene 2 receptor. J Biol Chem 2000, 275:30531-30536.
  • [144]Hu H, Chen G, Zhang JM, Zhang WP, Zhang L, Ge QF, Yao HT, Ding W, Chen Z, Wei EQ: Distribution of cysteinyl leukotriene receptor 2 in human traumatic brain injury and brain tumors. Acta Pharmacol Sin 2005, 26:685-690.
  • [145]Lecca D, Trincavelli ML, Gelosa P, Sironi L, Ciana P, Fumagalli M, Villa G, Verderio C, Grumelli C, Guerrini U, Tremoli E, Rosa P, Cuboni S, Martini C, Buffo A, Cimino M, Abbracchio MP: The recently identified P2Y-like receptor GPR17 is a sensor of brain damage and a new target for brain repair. PLoS One 2008, 3:e3579.
  • [146]Hui Y, Funk CD: Cysteinyl leukotriene receptors. Biochem Pharmacol 2002, 64:1549-1557.
  • [147]Di Gennaro A, Carnini C, Buccellati C, Ballerio R, Zarini S, Fumagalli F, Viappiani S, Librizzi L, Hernandez A, Murphy RC, Constantin G, De Curtis M, Folco G, Sala A: Cysteinyl-leukotrienes receptor activation in brain inflammatory reactions and cerebral edema formation: a role for transcellular biosynthesis of cysteinyl-leukotrienes. Faseb J 2004, 18:842-844.
  • [148]Zhang WP, Hu H, Zhang L, Ding W, Yao HT, Chen KD, Sheng WW, Chen Z, Wei EQ: Expression of cysteinyl leukotriene receptor 1 in human traumatic brain injury and brain tumors. Neurosci Lett 2004, 363:247-251.
  • [149]Froldi M, Castagna A, Parma M, Piona A, Tedeschi A, Miadonna A, Lorini M, Orazio EN, Lazzarin A: Mediator release in cerebrospinal fluid of human immunodeficiency virus-positive patients with central nervous system involvement. J Neuroimmunol 1992, 38:155-161.
  • [150]Pereira CF, Boven LA, Middel J, Verhoef J, Nottet HS: Induction of cyclooxygenase-2 expression during HIV-1-infected monocyte-derived macrophage and human brain microvascular endothelial cell interactions. J Leukoc Biol 2000, 68:423-428.
  • [151]Alvarez S, Serramia MJ, Fresno M, Munoz-Fernandez M: Human immunodeficiency virus type 1 envelope glycoprotein 120 induces cyclooxygenase-2 expression in neuroblastoma cells through a nuclear factor-kappaB and activating protein-1 mediated mechanism. J Neurochem 2005, 94:850-861.
  • [152]Alvarez S, Serramia MJ, Fresno M, Munoz-Fernandez MA: HIV-1 envelope glycoprotein 120 induces cyclooxygenase-2 expression in astrocytoma cells through a nuclear factor-kappaB-dependent mechanism. Neuromolecular Med 2007, 9:179-193.
  • [153]Gray F, Adle-Biassette H, Brion F, Ereau T, le Maner I, Levy V, Corcket G: Neuronal apoptosis in human immunodeficiency virus infection. J Neurovirol 2000, 6(Suppl 1):S38-43.
  • [154]Gray F, Adle-Biassette H, Chretien F, Lorin de la Grandmaison G, Force G, Keohane C: Neuropathology and neurodegeneration in human immunodeficiency virus infection. Pathogenesis of HIV-induced lesions of the brain, correlations with HIV-associated disorders and modifications according to treatments. Clin Neuropathol 2001, 20:146-155.
  • [155]Bansal AK, Mactutus CF, Nath A, Maragos W, Hauser KF, Booze RM: Neurotoxicity of HIV-1 proteins gp120 and Tat in the rat striatum. Brain Res 2000, 879:42-49.
  • [156]Louboutin JP, Reyes BA, Agrawal L, Van Bockstaele EJ, Strayer DS: HIV-1 gp120-induced neuroinflammation: relationship to neuron loss and protection by rSV40-delivered antioxidant enzymes. Exp Neurol 2010, 221:231-245.
  • [157]Kaul M, Lipton SA: Chemokines and activated macrophages in HIV gp120-induced neuronal apoptosis. Proc Natl Acad Sci USA 1999, 96:8212-8216.
  • [158]Medders KE, Sejbuk NE, Maung R, Desai MK, Kaul M: Activation of p38 MAPK is required in monocytic and neuronal cells for HIV glycoprotein 120-induced neurotoxicity. J Immunol 2010, 185:4883-4895.
  • [159]Corasaniti MT, Rotiroti D, Nappi G, Bagetta G: Neurobiological mediators of neuronal apoptosis in experimental neuroAIDS. Toxicol Lett 2003, 139:199-206.
  • [160]Bagetta G, Corasaniti MT, Paoletti AM, Berliocchi L, Nistico R, Giammarioli AM, Malorni W, Finazzi-Agro A: HIV-1 gp120-induced apoptosis in the rat neocortex involves enhanced expression of cyclo-oxygenase type 2 (COX-2). Biochem Biophys Res Commun 1998, 244:819-824.
  • [161]Maccarrone M, Bari M, Corasaniti MT, Nistico R, Bagetta G, Finazzi-Agro A: HIV-1 coat glycoprotein gp120 induces apoptosis in rat brain neocortex by deranging the arachidonate cascade in favor of prostanoids. J Neurochem 2000, 75:196-203.
  • [162]Samikkannu T, Agudelo M, Gandhi N, Reddy PV, Saiyed ZM, Nwankwo D, Nair MP: Human immunodeficiency virus type 1 clade B and C gp120 differentially induce neurotoxin arachidonic acid in human astrocytes: implications for neuroAIDS. J Neurovirol 2011, 17:230-238.
  • [163]Corasaniti MT, Turano P, Bilotta A, Malorni W, Stringaro AR, Nistico R, Finazzi-Agro A, Bagetta G: Evidence that increases of mitochondrial immunoreactive IL-1beta by HIV-1 gp120 implicate in situ cleavage of pro-IL-1beta in the neocortex of rat. J Neurochem 2001, 78:611-618.
  • [164]Corasaniti MT, Bilotta A, Strongoli MC, Navarra M, Bagetta G, Di Renzo G: HIV-1 coat protein gp120 stimulates interleukin-1beta secretion from human neuroblastoma cells: evidence for a role in the mechanism of cell death. Br J Pharmacol 2001, 134:1344-1350.
  • [165]Pu H, Hayashi K, Andras IE, Eum SY, Hennig B, Toborek M: Limited role of COX-2 in HIV Tat-induced alterations of tight junction protein expression and disruption of the blood-brain barrier. Brain Res 2007, 1184:333-344.
  • [166]Blanco A, Alvarez S, Fresno M, Munoz-Fernandez MA: Extracellular HIV-Tat induces cyclooxygenase-2 in glial cells through activation of nuclear factor of activated T cells. J Immunol 2008, 180:530-540.
  • [167]Flora G, Pu H, Hennig B, Toborek M: Cyclooxygenase-2 is involved in HIV-1 Tat-induced inflammatory responses in the brain. Neuromolecular Med 2006, 8:337-352.
  • [168]Wahl LM, Corcoran ML, Pyle SW, Arthur LO, Harel-Bellan A, Farrar WL: Human immunodeficiency virus glycoprotein (gp120) induction of monocyte arachidonic acid metabolites and interleukin 1. Proc Natl Acad Sci USA 1989, 86:621-625.
  • [169]Basselin M, Ramadan E, Igarashi M, Chang L, Chen M, Kraft AD, Harry GJ, Rapoport SI: Imaging upregulated brain arachidonic acid metabolism in HIV-1 transgenic rats. J Cereb Blood Flow Metab 2011, 31:486-493.
  • [170]Rao JS, Kim HW, Kellom M, Greenstein D, Chen M, Kraft AD, Harry GJ, Rapoport SI, Basselin M: Increased neuroinflammatory and arachidonic acid cascade markers, and reduced synaptic proteins, in brain of HIV-1 transgenic rats. J Neuroinflammation 2011, 8:101.
  • [171]Genis P, Jett M, Bernton EW, Boyle T, Gelbard HA, Dzenko K, Keane RW, Resnick L, Mizrachi Y, Volsky DJ, Epstein LG, Gendelman HE: Cytokines and arachidonic metabolites produced during human immunodeficiency virus (HIV)-infected macrophage-astroglia interactions: implications for the neuropathogenesis of HIV disease. J Exp Med 1992, 176:1703-1718.
  • [172]Maccarrone M, Navarra M, Corasaniti MT, Nistico G, Finazzi Agro A: Cytotoxic effect of HIV-1 coat glycoprotein gp120 on human neuroblastoma CHP100 cells involves activation of the arachidonate cascade. Biochem J 1998, 333(Pt 1):45-49.
  • [173]Niknami M, Patel M, Witting PK, Dong Q: Molecules in focus: cytosolic phospholipase A2-alpha. Int J Biochem Cell Biol 2009, 41:994-997.
  文献评价指标  
  下载次数:15次 浏览次数:50次