期刊论文详细信息
World Journal of Surgical Oncology
RNA interference-mediated silencing of eukaryotic translation initiation factor 3, subunit B (EIF3B) gene expression inhibits proliferation of colon cancer cells
Hui Wu1  Zhe Cui1  Jianhua Sun1  Jinxian Chen1  Zheng Wang1 
[1] Department of General Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, 145 Shandong Middle Road, Shanghai, 200001, China
关键词: Proliferation;    Colon cancer cell SW1116;    Eukaryotic initiation factor;   
Others  :  827647
DOI  :  10.1186/1477-7819-10-119
 received in 2012-02-27, accepted in 2012-06-26,  发布年份 2012
PDF
【 摘 要 】

Background

A key factor underlying the control of the cellular growth, size and proliferation involves the regulation of the total protein synthesis. Most often, the initial stages of mRNA translation are rate limiting, which involves a group of eukaryotic translation initiation factors (EIFs). Research advances focused on the inhibition of their expression and activity hold the key to the initiation and progression of tumor and tumor prognosis.

Method

We performed RNA interference (RNAi) with the lentivirus vector system to silence the EIF3B gene using the colon cancer cell strain SW1116. The negative control included the normal target cells infected with the negative control virus whereas the knockdown cells included the normal target cells transfected with the RNAi target virus. We tested the inhibition resulting from the decreased expression of EIF3B gene on the proliferation rate of SW1116 cells, including the cell cycle, apoptosis and clonability.

Results

Compared with the negative control, the impact of EIF3B gene expression in SW1116 cells on the levels of mRNA and protein in the knockdown group, was significantly inhibited (P <0.01). Furthermore, the cell proliferation rate and clonability were also significantly inhibited (P <0.01). The apoptosis rate increased significantly (P <0.05). A significant decrease in the number of cells in the G1 phase (P <0.01) and significant increases in S (P <0.01) and G2 phases (P <0.05) were observed.

Conclusions

The silencing of EIF3B gene expression inhibits the proliferation of colon cancer cells.

【 授权许可】

   
2012 Wang et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140713171220595.pdf 3212KB PDF download
Figure 8. 18KB Image download
Fig. 7. 64KB Image download
Figure 6. 27KB Image download
Figure 5. 21KB Image download
Figure 4. 42KB Image download
Figure 3. 19KB Image download
Figure 2. 49KB Image download
Figure 1. 15KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Fig. 7.

Figure 8.

【 参考文献 】
  • [1]Johnson LF, Levis R, Abelson HT, Green H, Penman S: Changes in RNA in relation to growth of the fibroblast. IV. Alterations in the production and processing of mRNA and rRNA in resting and growing cells. J Cell Biol 1976, 71:933-938.
  • [2]Zetterberg A, Larsson O, Wiman KG: What is the restriction point? Curr Opin Cell Biol 1995, 7:835-842.
  • [3]Donze O, Jagus R, Koromilas AE, Hershey JW, Sonenberg N: Abrogation of translation initiation factor eIF-2 phosphorylation causes malignant transformation of NIH 3 T3 cells. EMBO J 1995, 14:3828-3834.
  • [4]Koromilas AE, Roy S, Barber GN, Katze MG, Sonenberg N: Malignant transformation by a mutant of the IFN-inducible dsRNA-dependent protein kinase. Science 1992, 257:1685-1689.
  • [5]Guan XY, Fung JM, Ma NF, Lau SH, Tai LS, Xie D, Zhang Y, Hu L, Wu QL, Fang Y, Sham JS: Oncogenic role of eIF-5A2 in the development of ovarian cancer. Cancer Res 2004, 64:4197-4200.
  • [6]Miluzio A, Beugnet A, Volta V, Biffo S: Eukaryotic initiation factor 6 mediates a continuum between 60S ribosome biogenesis and translation. EMBO Rep 2009, 10:459-465.
  • [7]Gandin V, Miluzio A, Barbieri AM, Beugnet A, Kiyokawa H, Marchisio PC, Biffo S: Eukaryotic initiation factor 6 is rate-limiting in translation, growth and transformation. Nature 2008, 455:684-688.
  • [8]Shuda M, Kondoh N, Tanaka K, Ryo A, Wakatsuki T, Hada A, Goseki N, Igari T, Hatsuse K, Aihara T, Horiuchi S, Shichita M, Yamamoto N, Yamamoto M: Enhanced expression of translation factor mRNAs in hepatocellular carcinoma. Anticancer Res 2000, 20:2489-2494.
  • [9]Eberle J, Krasagakis K, Orfanos CE: Translation initiation factor eIF-4A1 mRNA is consistently overexpressed in human melanoma cells in vitro. Int J Cancer 1997, 71:396-401.
  • [10]Ruggero D, Montanaro L, Ma L, Xu W, Londei P, Cordon-Cardo C, Pandolfi PP: The translation factor eIF-4E promotes tumor formation and cooperates with c-Myc in lymphomagenesis. Nat Med 2004, 10:484-486.
  • [11]Bordeleau ME, Robert F, Gerard B, Lindqvist L, Chen SM, Wendel HG, Brem B, Greger H, Lowe SW, Porco JA, Pelletier J: Therapeutic suppression of translation initiation modulates chemosensitivity in a mouse lymphoma model. J Clin Invest 2008, 118:2651-2660.
  • [12]Bauer C, Diesinger I, Brass N, Steinhart H, Iro H, Meese EU: Translation initiation factor eIF-4G is immunogenic, overexpressed, and amplified in patients with squamous cell lung carcinoma. Cancer 2001, 92:822-829.
  • [13]Comtesse N, Keller A, Diesinger I, Bauer C, Kayser K, Huwer H, Lenhof HP, Meese E: Frequent overexpression of the genes FXR1, CLAPM1 and EIF4G located on amplicon 3q26-27 in squamous cell carcinoma of the lung. Int J Cancer 2007, 120:2538-2544.
  • [14]Elantak L, Wagner S, Herrmannova A, Karaskova M, Rutkai E, Lukavsky PJ, Valasek L: The indispensable N-terminal half of eIF3j/HCR1 cooperates with its structurally conserved binding partner EIF3B/PRT1-RRM and with eIF1A in stringent AUG selection. J Mol Biol 2010, 396:1097-1116.
  • [15]Sowa ME, Bennett EJ, Gygi SP, Harper JW: Defining the human deubiquitinating enzyme interaction landscape. Cell 2009, 138:389-403.
  • [16]Zhou M, Sandercock AM, Fraser CS, Ridlova G, Stephens E, Schenauer MR, Yokoi-Fong T, Barsky D, Leary JA, Hershey JW, Doudna JA, Robinson CV: Mass spectrometry reveals modularity and a complete subunit interaction map of the eukaryotic translation factor eIF3. Proc Natl Acad Sci USA 2008, 105:18139-18144.
  • [17]Dong Z, Liu LH, Han B, Pincheira R, Zhang JT: Role of eIF3 p170 in controlling synthesis of ribonucleotide reductase M2 and cell growth. Oncogene 2004, 23:3790-3801.
  • [18]Cappuzzo F, Varella-Garcia M, Rossi E, Gajapathy S, Valente M, Drabkin H, Gemmill R: MYC and EIF3H coamplification significantly improve response and survival of non-small cell lung cancer patients (NSCLC) treated with gefitinib. J Thorac Oncol 2009, 4:472-478.
  • [19]Nupponen NN, Porkka K, Kakkola L, Tanner M, Persson K, Borg A, Isola J, Visakorpi T: Amplification and overexpression of p40 subunit of eukaryotic translation initiation factor 3 in breast and prostate cancer. Am J Pathol 1999, 154:1777-1783.
  • [20]Scoles DR, Yong WH, Qin Y, Wawrowsky K, Pulst SM: Schwannomin inhibits tumorigenesis through direct interaction with the eukaryotic initiation factor subunit c (eIF3c). Hum Mol Genet 2006, 15:1059-1070.
  • [21]Mack DL, Boulanger CA, Callahan R, Smith GH: Expression of truncated Int6/eIF3e in mammary alveolar epithelium leads to persistent hyperplasia and tumorigenesis. Breast Cancer Res 2007, 9:R42. BioMed Central Full Text
  • [22]Marchetti A, Buttitta F, Pellegrini S, Bertacca G, Callahan R: Reduced expression of INT-6/eIF3-p48 in human tumors. Int J Oncol 2001, 18:175-179.
  • [23]Shi J, Kahle A, Hershey JW, Honchak BM, Warneke JA, Leong SP, Nelson MA: Decreased expression of eukaryotic initiation factor 3f deregulates translation and apoptosis in tumor cells. Oncogene 2006, 25:4923-4936.
  • [24]Zhang L, Pan X, Hershey JW: Individual overexpression of five subunits of human translation initiation factor eIF3 promotes malignant transformation of immortal fibroblast cells. J Biol Chem 2007, 282:5790-5800.
  文献评价指标  
  下载次数:38次 浏览次数:26次