期刊论文详细信息
Proteome Science
The rat striatum responds to nigro-striatal degeneration via the increased expression of proteins associated with growth and regeneration of neuronal circuitry
Monte A Gates1  Thomas M Wishart2  Maica Llavero Hurtado3  Heidi R Fuller1 
[1] Keele University, Institute for Science and Technology in Medicine, Department of Life Sciences, Huxley Building, Keele ST5 5BG, UK;Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, Edinburgh, UK;Division of Neurobiology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
关键词: Neurofilament;    DARPP-32;    GFAP;    Guanine deaminase;    iTRAQ;    Regeneration;    Nigro-striatal degeneration;    Striatum;    Proteomics;    Parkinson’s disease;   
Others  :  816533
DOI  :  10.1186/1477-5956-12-20
 received in 2014-01-31, accepted in 2014-04-17,  发布年份 2014
PDF
【 摘 要 】

Background

Idiopathic Parkinson’s disease is marked by degeneration of dopamine neurons projecting from the substantia nigra to the striatum. Although proteins expressed by the target striatum can positively affect the viability and growth of dopaminergic neurons, very little is known about the molecular response of the striatum as nigro-striatal denervation progresses. Here, iTRAQ labelling and MALDI TOF/TOF mass spectrometry have been used to quantitatively compare the striatal proteome of rats before, during, and after 6-OHDA induced dopamine denervation.

Results

iTRAQ analysis revealed the differential expression of 50 proteins at 3 days, 26 proteins at 7 days, and 34 proteins at 14 days post-lesioning, compared to the unlesioned striatum. While the denervated striatum showed a reduced expression of proteins associated with the loss of dopaminergic input (e.g., TH and DARPP-32), there was an increased expression of proteins associated with regeneration and growth of neurites (e.g., GFAP). In particular, the expression of guanine deaminase (GDA, cypin) – a protein known to be involved in dendritic branching – was significantly increased in the striatum at 3, 7 and 14 days post-lesioning (a finding verified by immunohistochemistry).

Conclusions

Together, these findings provide evidence to suggest that the response of the normal mammalian striatum to nigro-striatal denervation includes the increased expression of proteins that may have the capacity to facilitate repair and growth of neuronal circuitry.

【 授权许可】

   
2014 Fuller et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140710200725760.pdf 1203KB PDF download
Figure 6. 114KB Image download
Figure 5. 25KB Image download
Figure 4. 150KB Image download
Figure 3. 83KB Image download
Figure 2. 129KB Image download
Figure 1. 55KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Shastry BS: Parkinson’s disease: etiology, pathogenesis and future of gene therapy. Neurosci Res 2001, 41:5-12.
  • [2]Elbaz A, Moisan F: Update in the epidemiology of Parkinson’s disease. Curr Opin Neurol 2008, 21:454-460.
  • [3]Fritsch T, Smyth KA, Wallendal MS, Hyde T, Leo G, Geldmacher DS: Parkinson disease: research update and clinical management. South Med J 2012, 105:650-656.
  • [4]Schapira AH: Recent developments in biomarkers in Parkinson disease. Curr Opin Neurol 2013, 26:395-400.
  • [5]Lloyd K, Hornykiewicz O: Parkinson's disease: activity of L-dopa decarboxylase in discrete brain regions. Science 1970, 170:1212-1213.
  • [6]Bellucci A, Zaltieri M, Navarria L, Grigoletto J, Missale C, Spano P: From α-synuclein to synaptic dysfunctions: new insights into the pathophysiology of Parkinson's disease. Brain Res 2012, 1476:183-202.
  • [7]Sulzer D, Surmeier DJ: Neuronal vulnerability, pathogenesis, and Parkinson's disease. Mov Disord 2013, 28:715-724.
  • [8]Chan CS, Guzman JN, Ilijic E, Mercer JN, Rick C, Tkatch T, Meredith GE, Surmeier DJ: 'Rejuvenation' protects neurons in mouse models of Parkinson's disease. Nature 2007, 447:1081-1086.
  • [9]Gates MA, Coupe VM, Torres EM, Fricker-Gates RA, Dunnett SB: Spatially- and temporally-restricted chemoattractive and chemorepulsive cues direct the formation of the nigro- striatal circuit. Eur J Neurosci 2004, 19:831-844.
  • [10]Blakely BD, Bye CR, Fernando CV, Horne MK, Macheda ML, Stacker SA, Arenas E, Parish CL: Wnt5a regulates midbrain dopaminergic axon growth and guidance. PLoS One 2011, 6:e18373.
  • [11]Pierret P, Quenneville N, Vandaele S, Abbaszadeh R, Lanctôt C, Crine P, Doucet G: Trophic and tropic effects of striatal astrocytes on cografted mesencephalic dopamine neurons and their axons. J Neurosci Res 1998, 51:23-40.
  • [12]Oo TF, Kholodilov N, Burke RE: Regulation of natural cell death in dopaminergic neurons of the substantia nigra by striatal glial cell line-derived neurotrophic factor in vivo. J Neurosci 2003, 23:5141-5148.
  • [13]Nevalainen N, Chermenina M, Rehnmark A, Berglöf E, Marschinke F, Strömberg I: Glial cell line-derived neurotrophic factor is crucial for long-term maintenance of the nigro-striatal system. Neurosci 2010, 171:1357-1366.
  • [14]Hidalgo-Figueroa M, Bonilla S, Gutiérrez F, Pascual A, López-Barneo J: GDNF is predominantly expressed in the PV + neostriatal interneuronal ensemble in normal mouse and after injury of the nigro-striatal pathway. J Neurosci 2012, 32:864-872.
  • [15]Fuller HR, Man NT, Lam le T, Shamanin VA, Androphy EJ, Morris GE: Valproate and bone loss: iTRAQ proteomics show that valproate reduces collagens and osteonectin in SMA cells. J Proteome Res 2010, 9:4228-4233.
  • [16]Brodkey JA, Gates MA, Laywell ED, Steindler DA: The complex nature of interactive neuroregeneration-related molecules. Exp Neurol 1993, 123:251-270.
  • [17]Hemmings HC Jr, Greengard P, Tung HY, Cohen P: DARPP-32, a dopamine-regulated neuronal phosphoprotein, is a potent inhibitor of protein phosphatise-1. Nature 1984, 310:503-505.
  • [18]Ouimet CC, Miller PE, Hemmings HC Jr, Walaas I, Greengard P: DARPP-32, a dopamine and adenosine 3’56 monophosphate- regulated phosphoprotein enriched in dopamine- innervated brain regions III. J Neurosci 1984, 4:111-124.
  • [19]Ciccarelli R, Ballerini P, Sabatino G, Rathbone MP, D’Onofrio M, Caciagli F, Di lorio P: Involvement of astrocytes in purine- mediated reparative processes in the brain. Int J Dev Neurosci 2001, 19:395-414.
  • [20]Akum BF, Chen M, Gunderson SI, Riefler GM, Scerri-Hansen MM, Firestein BL: Cypin regulates dendrite patterning in hippocampal neurons by promoting microtubule assembly. Nat Neurosci 2004, 7:145-152.
  • [21]Sortwell CE, Collier TJ, Sladek JR Jr: Co-grafted embryonic striatum increases the survival of grafted embryonic dopamine neurons. J Comp Neurol 1998, 399:530-540.
  • [22]Sladek JR Jr, Bjugstad KB, Collier TJ, Bundock EA, Blanchard BC, Elsworth JD, Roth RH, Redmond DE Jr: Embryonic substantia nigra grafts show directional outgrowth to cografted striatal grafts and potential for pathway reconstruction in nonhuman primate. Cell Transplant 2008, 17:427-444.
  • [23]Thompson LH, Grealish S, Kirik D, Björklund A: Reconstruction of the nigro-striatal dopamine pathway in the adult mouse brain. Eur J Neurosci 2009, 30:625-638.
  • [24]Yuste JE, Echeverry MB, Ros-Bernal F, Gomez A, Ros CM, Campuzano CM, Fernandez-Villalba E, Herrero MT: 7-Nitroindazole down- regulates dopamine/DARPP-32 signaling in neostriatal neruons in a rat model of Parkinson’s disease. Neuropharmacology 2012, 63:1258-1267.
  • [25]Raisman-Vozari R, Girault JA, Moussaoui S, Feuerstein C, Jenner P, Marsden CD, Agid Y: Lack of change in striatal DARPP-32 levels following nigro-striatal dopaminergic lesions in animals and in Parkinsonian syndromes in man. Brain Res 1990, 507:45-50.
  • [26]Santini E, Valjent E, Usiello A, Carta M, Borgkvist A, Girault J-A, Herve’ D, Greengard P, Fisone G: Critical involvement of cAMP/DARPP-32 and extracellular signal- regulated protein kinase signalling in L-DOPA- induced dyskinesia. J Neurosci 2007, 27:6995-7005.
  • [27]Rolls A, Shechter R, Schwartz M: The bright side of the glial scar in CNS repair. Nat Rev Neurosci 2009, 10:235-241.
  • [28]Kwok JC, Dick G, Wang D, Fawcett JW: Extracellular matrix and perineuronal nets in CNS repair. Dev Neurobiol 2011, 71:1073-1089.
  • [29]Joester A, Faissner A: The structure and function of tenascins in the nervous system. Matrix Biol 2001, 20:13-22.
  • [30]Sharma K, Selzer ME, Li S: Scar-mediated inhibition and CSPG receptors in the CNS. Exp Neurol 2012, 237:370-378.
  • [31]Clarke LE, Barres BA: Emerging roles of astrocytes in neural circuit development. Nat Rev Neurosci 2013, 14:311-321.
  • [32]Firestein BL, Firestein BL, Brenman JE, Aoki C, Sanchez-Perez AM, El-Husseini AE, Bredt DS: Cypin: a cytosolic regulator of PSD-95 postsynaptic targeting. Neuron 1999, 24:659-672.
  • [33]Chen H, Firestein BL: RhoA regulates dendrite branching in hippocampal neurons by decreasing cypin protein levels. J Neurosci 2007, 27:8378-8386.
  • [34]Fernández JR, Byrne B, Firestein BL: Phylogenetic analysis and molecular evolution of guanine deaminases: from guanine to dendrites. J Mol Evol 2009, 68:227-235.
  • [35]Tseng CY, Firestein BL: The role of PSD-95 and cypin in morphological changes in dendrites following sublethal NMDA exposure. J Neurosci 2011, 31:15468-15480.
  • [36]Chen X, Burdett TC, Desjardins CA, Logan R, Cipriani S, Xu Y, Schwarzschild MA: Disrupted and transgenic urate oxidase alter urate and dopaminergic neurodegeneration. Proc Natl Acad Sci U S A 2013, 110:300-305.
  • [37]Pernet V, Schwab ME: The role of Nogo-A in axonal plasticity, regrowth and repair. Cell Tissue Res 2012, 349:97-104.
  • [38]Hemmings HC Jr, Nairn AC, McGuinness TL, Huganir RL, Greengard P: Role of protein phosphorylation in neuronal signal transduction. FASEB J 1989, 3:1583-1592.
  • [39]Witkovsky P, Patel JC, Lee CR, Rice ME: Immunocytochemical identification of proteins involved in dopamine release from the somatodendritic compartment of nigral dopaminergic neurons. Neuroscience 2009, 164:488-496.
  • [40]Donmez G, Outeiro TF: SIRT1 and SIRT2: emerging targets in neurodegeneration. EMBO Mol Med 2013, 5:344-352.
  • [41]Outeiro TF, Kontopoulos E, Altmann SM, Kufareva I, Strathearn KE, Amore AM, Volk CB, Maxwell MM, Rochet JC, McLean PJ, Young AB, Abagyan R, Feany MB, Hyman BT, Kazantsez AG: Sirtuin 2 inhibitors rescue alpha- synuclein- mediated toxicity in models of Parkinson’s disease. Science 2007, 317:516-519.
  • [42]Schapira AH, Cooper JM, Dexter D, Jenner P, Clark JB, Marsden CD: Mitochondrial complex I deficiency in Parkinson’s disease. Lancet 1989, 1:1269.
  • [43]Geisler S, Holmstrom KM, Skujat D, Fiesel FC, Rothfuss OC, Kahle PJ, Springer W: PINK1/Parkin- mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol 2010, 12:119-131.
  • [44]Sun Y, Vashisht AA, Tchieu J, Wohlschlegel JA, Dreier L: Voltage- dependent anion channels (VDACs) recruit Parkin to defective mitochondria to promote mitochondrial autophagy. J Biol Chem 2012, 287:40652-40660.
  • [45]Choi P, Snyder H, Petrucelli L, Theisler C, Chong M, Zhang Y, Lim K, Chung KK, Kehoe K, D’Adamio L, Lee JM, Cochran E, Bowser R, Dawson TM, Wolozin B: SEPT5_v2 is a parkin- binding protein. Brain Res Mol Brain Res 2003, 117:179-189.
  • [46]Grealish S, Xie L, Kelly M, Dowd E: Unilateral axonal or terminal injection of 6-hydroxydopamine causes rapid-onset nigrostriatal degeneration and contralateral motor impairments in the rat. Brain Res Bull 2008, 77:312-319.
  • [47]Wishart TM, Paterson JM, Short DM, Meredith S, Robertson KA, Sutherland C, Cousin MA, Dutia MB, Gillingwater TH: Differential proteomics analysis of synaptic proteins identifies potential cellular targets and protein mediators of synaptic neuroprotection conferred by the slow Wallerian degeneration (Wlds) gene. Mol Cell Proteomics 2007, 6:1318-1330.
  文献评价指标  
  下载次数:18次 浏览次数:11次