Molecular Neurodegeneration | |
Tau deletion impairs intracellular β-amyloid-42 clearance and leads to more extracellular plaque deposition in gene transfer models | |
Charbel Moussa2  Joel Schachter1  Wenqiang Chen3  Michaeline Hebron2  Irina Lonskaya2  | |
[1] Neuroscience Discovery, Merck Research Laboratories, 770 Sunneytown Pike, West Point, PA 19486, USA;Department of Neuroscience, Laboratory for Dementia and Parkinsonism, Georgetown University Medical Center, 3970 Reservoir RD, Washington, DC 20057, USA;Department of Traditional Chinese Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China | |
关键词: Proteasome; Autophagy; Plaques; Intracellular Aβ1-42; Tau; | |
Others : 1132673 DOI : 10.1186/1750-1326-9-46 |
|
received in 2014-08-20, accepted in 2014-10-21, 发布年份 2014 | |
【 摘 要 】
Background
Tau is an axonal protein that binds to and regulates microtubule function. Hyper-phosphorylation of Tau reduces its binding to microtubules and it is associated with β-amyloid deposition in Alzheimer’s disease. Paradoxically, Tau reduction may prevent β-amyloid pathology, raising the possibility that Tau mediates intracellular Aβ clearance. The current studies investigated the role of Tau in autophagic and proteasomal intracellular Aβ1-42 clearance and the subsequent effect on plaque deposition.
Results
Tau deletion impaired Aβ clearance via autophagy, but not the proteasome, while introduction of wild type human Tau into Tau−/− mice partially restored autophagic clearance of Aβ1-42, suggesting that exogenous Tau expression can support autophagic Aβ1-42 clearance. Tau deletion impaired autophagic flux and resulted in Aβ1-42 accumulation in pre-lysosomal autophagic vacuoles, affecting Aβ1-42 deposition into the lysosome. This autophagic defect was associated with decreased intracellular Aβ1-42 and increased plaque load in Tau−/− mice, which displayed less cell death. Nilotinib, an Abl tyrosine kinase inhibitor that promotes autophagic clearance mechanisms, reduced Aβ1-42 only when exogenous human Tau was expressed in Tau−/− mice.
Conclusions
These studies demonstrate that Tau deletion affects intracellular Aβ1-42 clearance, leading to extracellular plaque.
【 授权许可】
2014 Lonskaya et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150304041752862.pdf | 3287KB | download | |
Figure 6. | 261KB | Image | download |
Figure 5. | 150KB | Image | download |
Figure 4. | 194KB | Image | download |
Figure 3. | 147KB | Image | download |
Figure 2. | 90KB | Image | download |
Figure 1. | 110KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
【 参考文献 】
- [1]Selkoe DJ: Alzheimer's disease: genes, proteins, and therapy. Physiol Rev 2001, 81:741-766.
- [2]Gotz J, Chen F, van Dorpe J, Nitsch RM: Formation of neurofibrillary tangles in P301l tau transgenic mice induced by Abeta 42 fibrils. Science 2001, 293:1491-1495.
- [3]King ME, Kan HM, Baas PW, Erisir A, Glabe CG, Bloom GS: Tau-dependent microtubule disassembly initiated by prefibrillar beta-amyloid. J Cell Biol 2006, 175:541-546.
- [4]Roberson ED, Scearce-Levie K, Palop JJ, Yan F, Cheng IH, Wu T, Gerstein H, Yu GQ, Mucke L: Reducing endogenous tau ameliorates amyloid beta-induced deficits in an Alzheimer's disease mouse model. Science 2007, 316:750-754.
- [5]Vossel KA, Zhang K, Brodbeck J, Daub AC, Sharma P, Finkbeiner S, Cui B, Mucke L: Tau reduction prevents Abeta-induced defects in axonal transport. Science 2010, 330:198.
- [6]See TM, LaMarre AK, Lee SE, Miller BL: Genetic causes of frontotemporal degeneration. J Geriatr Psychiatry Neurol 2010, 23:260-268.
- [7]Short RA, Graff-Radford NR, Adamson J, Baker M, Hutton M: Differences in tau and apolipoprotein E polymorphism frequencies in sporadic frontotemporal lobar degeneration syndromes. Arch Neurol 2002, 59:611-615.
- [8]Giannakopoulos P, Herrmann FR, Bussiere T, Bouras C, Kovari E, Perl DP, Morrison JH, Gold G, Hof PR: Tangle and neuron numbers, but not amyloid load, predict cognitive status in Alzheimer's disease. Neurology 2003, 60:1495-1500.
- [9]Ethell DW: An amyloid-notch hypothesis for Alzheimer's disease. Neuroscientist 2010, 16:614-617.
- [10]Balasubramanian AB, Kawas CH, Peltz CB, Brookmeyer R, Corrada MM: Alzheimer disease pathology and longitudinal cognitive performance in the oldest-old with no dementia. Neurology 2012, 79:915-921.
- [11]Kawas CH, Greenia DE, Bullain SS, Clark CM, Pontecorvo MJ, Joshi AD, Corrada MM: Amyloid imaging and cognitive decline in nondemented oldest-old: the 90+ Study. Alzheimers Dement 2013, 9:199-203.
- [12]Robinson JL, Geser F, Corrada MM, Berlau DJ, Arnold SE, Lee VM, Kawas CH, Trojanowski JQ: Neocortical and hippocampal amyloid-beta and tau measures associate with dementia in the oldest-old. Brain 2011, 134:3708-3715.
- [13]Rebeck GW, Hoe HS, Moussa CE: Beta-amyloid1-42 gene transfer model exhibits intraneuronal amyloid, gliosis, tau phosphorylation, and neuronal loss. J Biol Chem 2010, 285:7440-7446.
- [14]Lonskaya I, Hebron ML, Desforges NM, Franjie A, Moussa CE: Tyrosine kinase inhibition increases functional parkin-Beclin-1 interaction and enhances amyloid clearance and cognitive performance. EMBO Mol Med 2013, 5:1247-1262.
- [15]Burns MP, Zhang L, Rebeck GW, Querfurth HW, Moussa CE: Parkin promotes intracellular Abeta1-42 clearance. Hum Mol Genet 2009, 18:3206-3216.
- [16]Lonskaya I, Hebron ML, Desforges NM, Schachter JB, Moussa CE: Nilotinib-induced autophagic changes increase endogenous parkin level and ubiquitination, leading to amyloid clearance. J Mol Med (Berl) 2014, 92(4):373-386.
- [17]Lonskaya I, Shekoyan AR, Hebron ML, Desforges N, Algarzae NK, Moussa CE: Diminished parkin solubility and co-localization with intraneuronal amyloid-beta are associated with autophagic defects in Alzheimer's disease. J Alzheimers Dis 2013, 33:231-247.
- [18]Khandelwal PJ, Herman AM, Hoe HS, Rebeck GW, Moussa CE: Parkin mediates beclin-dependent autophagic clearance of defective mitochondria and ubiquitinated Abeta in AD models. Hum Mol Genet 2011, 20:2091-2102.
- [19]Khandelwal PJ, Dumanis SB, Herman AM, Rebeck GW, Moussa CE: Wild type and P301L mutant Tau promote neuro-inflammation and alpha-Synuclein accumulation in lentiviral gene delivery models. Mol Cell Neurosci 2012, 49:44-53.
- [20]Dawson HN, Cantillana V, Jansen M, Wang H, Vitek MP, Wilcock DM, Lynch JR, Laskowitz DT: Loss of tau elicits axonal degeneration in a mouse model of Alzheimer's disease. Neuroscience 2010, 169:516-531.
- [21]Jimenez-Mateos EM, Gonzalez-Billault C, Dawson HN, Vitek MP, Avila J: Role of MAP1B in axonal retrograde transport of mitochondria. Biochem J 2006, 397:53-59.
- [22]Klionsky DJ, Abdalla FC, Abeliovich H, Abraham RT, Acevedo-Arozena A, Adeli K, Agholme L, Agnello M, Agostinis P, Aguirre-Ghiso JA, Ahn HJ, Ait-Mohamed O, Ait-Si-Ali S, Akematsu T, Akira S, Al-Younes HM, Al-Zeer MA, Albert ML, Albin RL, Alegre-Abarrategui J, Aleo MF, Alirezaei M, Almasan A, Almonte-Becerril M, Amano A, Amaravadi R, Amarnath S, Amer AO, Andrieu-Abadie N, Anantharam V, et al.: Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 2012, 8:445-544.
- [23]Hebron ML, Lonskaya I, Moussa CE: Tyrosine kinase inhibition facilitates autophagic SNCA/alpha-synuclein clearance. Autophagy 2013, 9:1249-1250.
- [24]Nilsson P, Loganathan K, Sekiguchi M, Matsuba Y, Hui K, Tsubuki S, Tanaka M, Iwata N, Saito T, Saido TC: Abeta secretion and plaque formation depend on autophagy. Cell reports 2013, 5:61-69.
- [25]Maday S, Wallace KE, Holzbaur EL: Autophagosomes initiate distally and mature during transport toward the cell soma in primary neurons. J Cell Biol 2012, 196:407-417.
- [26]Pacheco CD, Elrick MJ, Lieberman AP: Tau normal function influences Niemann-Pick type C disease pathogenesis in mice and modulates autophagy in NPC1-deficient cells. Autophagy 2009, 5:548-550.
- [27]Pacheco CD, Elrick MJ, Lieberman AP: Tau deletion exacerbates the phenotype of Niemann-Pick type C mice and implicates autophagy in pathogenesis. Hum Mol Genet 2009, 18:956-965.
- [28]Hebron ML, Algarzae NK, Lonskaya I, Moussa C: Fractalkine signaling and Tau hyper-phosphorylation are associated with autophagic alterations in lentiviral Tau and Abeta1-42 gene transfer models. Exp Neurol 2014, 251:127-138.
- [29]Ghazi A, Henis-Korenblit S, Kenyon C: Regulation of Caenorhabditis elegans lifespan by a proteasomal E3 ligase complex. Proc Natl Acad Sci U S A 2007, 104:5947-5952.
- [30]Simonsen A, Cumming RC, Brech A, Isakson P, Schubert DR, Finley KD: Promoting basal levels of autophagy in the nervous system enhances longevity and oxidant resistance in adult Drosophila. Autophagy 2008, 4:176-184.
- [31]Korolchuk VI, Mansilla A, Menzies FM, Rubinsztein DC: Autophagy inhibition compromises degradation of ubiquitin-proteasome pathway substrates. Mol Cell 2009, 33:517-527.
- [32]Bloom GS: Amyloid-beta and Tau: The Trigger and Bullet in Alzheimer Disease Pathogenesis. JAMA Neurol 2014, 71(4):505-508.
- [33]Congdon EE, Wu JW, Myeku N, Figueroa YH, Herman M, Marinec PS, Gestwicki JE, Dickey CA, Yu WH, Duff KE: Methylthioninium chloride (methylene blue) induces autophagy and attenuates tauopathy in vitro and in vivo. Autophagy 2012, 8:609-622.
- [34]Kruger U, Wang Y, Kumar S, Mandelkow EM: Autophagic degradation of tau in primary neurons and its enhancement by trehalose. Neurobiol Aging 2012, 33:2291-2305.
- [35]Rodriguez-Navarro JA, Rodriguez L, Casarejos MJ, Solano RM, Gomez A, Perucho J, Cuervo AM, Garcia de Yebenes J, Mena MA: Trehalose ameliorates dopaminergic and tau pathology in parkin deleted/tau overexpressing mice through autophagy activation. Neurobiol Dis 2010, 39:423-438.
- [36]Schaeffer V, Lavenir I, Ozcelik S, Tolnay M, Winkler DT, Goedert M: Stimulation of autophagy reduces neurodegeneration in a mouse model of human tauopathy. Brain 2012, 135:2169-2177.
- [37]Hebron ML, Lonskaya I, Moussa CE: Nilotinib reverses loss of dopamine neurons and improves motor behavior via autophagic degradation of alpha-synuclein in Parkinson's disease models. Hum Mol Genet 2013, 22:3315-3328.
- [38]Marzella L, Ahlberg J, Glaumann H: Isolation of autophagic vacuoles from rat liver: morphological and biochemical characterization. J Cell Biol 1982, 93:144-154.