期刊论文详细信息
Retrovirology
SIV replication is directly downregulated by four antiviral miRNAs
Janice E Clements1  Patrick M Tarwater2  Kenneth W Witwer3  Jeanne M Sisk3 
[1]Department of Pathology, Edward D. Miller Research Building, The Johns Hopkins University School of Medicine, 733 N Broadway, Baltimore, MD 21205, USA
[2]Division of Biostatistics & Epidemiology, Texas Tech University Health Science Center, El Paso, TX, USA
[3]Department of Molecular and Comparative Pathobiology, Edward D. Miller Research Building, The Johns Hopkins University School of Medicine, 733 N Broadway, Baltimore, MD 21205, USA
关键词: Macrophages;    SIV;    HIV;    TNFa;    IFNb;    MiR-146a;    MiR-9;    MiR-29b;    MiR-29a;    MicroRNA;   
Others  :  807301
DOI  :  10.1186/1742-4690-10-95
 received in 2013-04-29, accepted in 2013-08-21,  发布年份 2013
PDF
【 摘 要 】

Background

Host cell microRNAs (miRNAs) have been shown to regulate the expression of both cellular and viral RNAs, in particular impacting both Hepatitis C Virus (HCV) and Human Immunodeficiency Virus (HIV). To investigate the role of miRNAs in regulating replication of the simian immunodeficiency virus (SIV) in macrophage lineage cells, we used primary macrophages to study targeting of SIV RNA by miRNAs. We examined whether specific host miRNAs directly target SIV RNA early in infection and might be induced via type I interferon pathways.

Results

miRNA target prediction programs identified miRNA binding sites within SIV RNA. Predicted binding sites for miRs-29a, -29b, -9 and -146a were identified in the SIV Nef/U3 and R regions, and all four miRNAs decreased virus production and viral RNA expression in primary macrophages. To determine whether levels of these miRNAs were affected by SIV infection, IFNβ or TNFα treatments, miRNA RT-qPCR assays measured miRNA levels after infection or treatment of macrophages. SIV RNA levels as well as virus production was downregulated by direct targeting of the SIV Nef/U3 and R regions by four miRNAs. miRs-29a, -29b, -9 and -146a were induced in primary macrophages after SIV infection. Each of these miRNAs was regulated by innate immune signaling through TNFα and/or the type I IFN, IFNβ.

Conclusions

The effects on miRNAs caused by HIV/SIV infection are illustrated by changes in their cellular expression throughout the course of disease, and in different patient populations. Our data demonstrate that levels of primary transcripts and mature miRs-29a, -29b, -9 and -146a are modulated by SIV infection. We show that the SIV 3′ UTR contains functional miRNA response elements (MREs) for all four miRNAs. Notably, these miRNAs regulate virus production and viral RNA levels in macrophages, the primary cells infected in the CNS that drive inflammation leading to HIV-associated neurocognitive disorders. This report may aid in identification miRNAs that target viral RNAs and HIV/SIV specifically, as well as in identification of miRNAs that may be targets of new therapies to treat HIV.

【 授权许可】

   
2013 Sisk et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140708105226272.pdf 579KB PDF download
Figure 7. 77KB Image download
Figure 6. 74KB Image download
Figure 5. 43KB Image download
Figure 4. 67KB Image download
Figure 3. 34KB Image download
Figure 2. 24KB Image download
Figure 1. 63KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Triant VA: HIV infection and coronary heart disease: an intersection of epidemics. J Infect Dis 2012, 205(Suppl 3):S355-S361.
  • [2]Mothobi NZ, Brew BJ: Neurocognitive dysfunction in the highly active antiretroviral therapy era. Curr Opin Infect Dis 2012, 25:4-9.
  • [3]Hatziioannou T, Evans DT: Animal models for HIV/AIDS research. Nat Rev Microbiol 2012, 10:852-867.
  • [4]Margolis DM: Histone deacetylase inhibitors and HIV latency. Curr Opin HIV AIDS 2011, 6:25-29.
  • [5]By Y, Durand-Gorde JM, Condo J, Lejeune PJ, Fenouillet E, Guieu R, Ruf J: Monoclonal antibody-assisted stimulation of adenosine A2A receptors induces simultaneous downregulation of CXCR4 and CCR5 on CD4+ T-cells. Hum Immunol 2010, 71:1073-1076.
  • [6]Barber SA, Herbst DS, Bullock BT, Gama L, Clements JE: Innate immune responses and control of acute simian immunodeficiency virus replication in the central nervous system. J Neurovirol 2004, 10(Suppl 1):15-20.
  • [7]Barber SA, Gama L, Dudaronek JM, Voelker T, Tarwater PM, Clements JE: Mechanism for the establishment of transcriptional HIV latency in the brain in a simian immunodeficiency virus-macaque model. J Infect Dis 2006, 193:963-970.
  • [8]Witwer KW, Gama L, Li M, Bartizal CM, Queen SE, Varrone JJ, Brice AK, Graham DR, Tarwater PM, Mankowski JL, et al.: Coordinated regulation of SIV replication and immune responses in the CNS. PLoS One 2009, 4:e8129.
  • [9]Clements JE, Babas T, Mankowski JL, Suryanarayana K, Piatak M Jr, Tarwater PM, Lifson JD, Zink MC: The central nervous system as a reservoir for simian immunodeficiency virus (SIV): steady-state levels of SIV DNA in brain from acute through asymptomatic infection. J Infect Dis 2002, 186:905-913.
  • [10]Shen A, Zink MC, Mankowski JL, Chadwick K, Margolick JB, Carruth LM, Li M, Clements JE, Siliciano RF: Resting CD4+ T lymphocytes but not thymocytes provide a latent viral reservoir in a simian immunodeficiency virus-Macaca nemestrina model of human immunodeficiency virus type 1-infected patients on highly active antiretroviral therapy. J Virol 2003, 77:4938-4949.
  • [11]Chase AJ, Sedaghat AR, German JR, Gama L, Zink MC, Clements JE, Siliciano RF: Severe depletion of CD4+ CD25+ regulatory T cells from the intestinal lamina propria but not peripheral blood or lymph nodes during acute simian immunodeficiency virus infection. J Virol 2007, 81:12748-12757.
  • [12]Clements JE, Li M, Gama L, Bullock B, Carruth LM, Mankowski JL, Zink MC: The central nervous system is a viral reservoir in simian immunodeficiency virus–infected macaques on combined antiretroviral therapy: a model for human immunodeficiency virus patients on highly active antiretroviral therapy. J Neurovirol 2005, 11:180-189.
  • [13]Carruth LM, Zink MC, Tarwater PM, Miller MD, Li M, Queen LA, Mankowski JL, Shen A, Siliciano RF, Clements JE: SIV-specific T lymphocyte responses in PBMC and lymphoid tissues of SIV-infected pigtailed macaques during suppressive combination antiretroviral therapy. J Med Primatol 2005, 34:109-121.
  • [14]Cosenza MA, Zhao ML, Si Q, Lee SC: Human brain parenchymal microglia express CD14 and CD45 and are productively infected by HIV-1 in HIV-1 encephalitis. Brain Pathol 2002, 12:442-455.
  • [15]Williams KC, Corey S, Westmoreland SV, Pauley D, Knight H, deBakker C, Alvarez X, Lackner AA: Perivascular macrophages are the primary cell type productively infected by simian immunodeficiency virus in the brains of macaques: implications for the neuropathogenesis of AIDS. J Exp Med 2001, 193:905-915.
  • [16]Roberts ES, Zandonatti MA, Watry DD, Madden LJ, Henriksen SJ, Taffe MA, Fox HS: Induction of pathogenic sets of genes in macrophages and neurons in NeuroAIDS. Am J Pathol 2003, 162:2041-2057.
  • [17]Goodbourn S, Didcock L, Randall RE: Interferons: cell signalling, immune modulation, antiviral response and virus countermeasures. J Gen Virol 2000, 81:2341-2364.
  • [18]Towers GJ: The control of viral infection by tripartite motif proteins and cyclophilin A. Retrovirology 2007, 4:40. BioMed Central Full Text
  • [19]Strebel K, Luban J, Jeang KT: Human cellular restriction factors that target HIV-1 replication. BMC Med 2009, 7:48. BioMed Central Full Text
  • [20]Chiu YL, Soros VB, Kreisberg JF, Stopak K, Yonemoto W, Greene WC: Cellular APOBEC3G restricts HIV-1 infection in resting CD4+ T cells. Nature 2005, 435:108-114.
  • [21]Monajemi M, Woodworth CF, Benkaroun J, Grant M, Larijani M: Emerging complexities of APOBEC3G action on immunity and viral fitness during HIV infection and treatment. Retrovirology 2012, 9:35. BioMed Central Full Text
  • [22]Laguette N, Sobhian B, Casartelli N, Ringeard M, Chable-Bessia C, Segeral E, Yatim A, Emiliani S, Schwartz O, Benkirane M: SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature 2011, 474:654-657.
  • [23]Harris RS, Hultquist JF, Evans DT: The restriction factors of human immunodeficiency virus. J Biol Chem 2012, 287:40875-40883.
  • [24]Ahluwalia JK, Khan SZ, Soni K, Rawat P, Gupta A, Hariharan M, Scaria V, Lalwani M, Pillai B, Mitra D, Brahmachari SK: Human cellular microRNA hsa-miR-29a interferes with viral nef protein expression and HIV-1 replication. Retrovirology 2008, 5:117. BioMed Central Full Text
  • [25]Klase Z, Houzet L, Jeang KT: MicroRNAs and HIV-1: complex interactions. J Biol Chem 2012, 287:40884-40890.
  • [26]Bartel DP: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004, 116:281-297.
  • [27]Friedman RC, Farh KK, Burge CB, Bartel DP: Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 2009, 19:92-105.
  • [28]Chivukula RR, Mendell JT: Circular reasoning: microRNAs and cell-cycle control. Trends Biochem Sci 2008, 33:474-481.
  • [29]Chang TC, Mendell JT: microRNAs in vertebrate physiology and human disease. Annu Rev Genomics Hum Genet 2007, 8:215-239.
  • [30]Pedersen IM, Cheng G, Wieland S, Volinia S, Croce CM, Chisari FV, David M: Interferon modulation of cellular microRNAs as an antiviral mechanism. Nature 2007, 449:919-922.
  • [31]Tsitsiou E, Lindsay MA: microRNAs and the immune response. Curr Opin Pharmacol 2009, 9:514-520.
  • [32]Witwer KW, Sisk JM, Gama L, Clements JE: MicroRNA regulation of IFN-beta protein expression: rapid and sensitive modulation of the innate immune response. J Immunol 2010, 184:2369-2376.
  • [33]Jopling CL, Yi M, Lancaster AM, Lemon SM, Sarnow P: Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science 2005, 309:1577-1581.
  • [34]Song L, Liu H, Gao S, Jiang W, Huang W: Cellular microRNAs inhibit replication of the H1N1 influenza A virus in infected cells. J Virol 2010, 84:8849-8860.
  • [35]Buggele WA, Johnson KE, Horvath CM: Influenza A virus infection of human respiratory cells induces primary microRNA expression. J Biol Chem 2012, 287:31027-31040.
  • [36]Kang JG, Majerciak V, Uldrick TS, Wang X, Kruhlak M, Yarchoan R, Zheng ZM: Kaposi’s sarcoma-associated herpesviral IL-6 and human IL-6 open reading frames contain miRNA binding sites and are subject to cellular miRNA regulation. J Pathol 2011, 225:378-389.
  • [37]Riley KJ, Rabinowitz GS, Yario TA, Luna JM, Darnell RB, Steitz JA: EBV and human microRNAs co-target oncogenic and apoptotic viral and human genes during latency. EMBO J 2012, 31:2207-2221.
  • [38]Houzet L, Jeang KT: MicroRNAs and human retroviruses. Biochim Biophys Acta 1809, 2011:686-693.
  • [39]Houzet L, Yeung ML, de Lame V, Desai D, Smith SM, Jeang KT: MicroRNA profile changes in human immunodeficiency virus type 1 (HIV-1) seropositive individuals. Retrovirology 2008, 5:118. BioMed Central Full Text
  • [40]Witwer KW, Watson AK, Blankson JN, Clements JE: Relationships of PBMC microRNA expression, plasma viral load, and CD4+ T-cell count in HIV-1-infected elite suppressors and viremic patients. Retrovirology 2012, 9:5. BioMed Central Full Text
  • [41]Bignami F, Pilotti E, Bertoncelli L, Ronzi P, Gulli M, Marmiroli N, Magnani G, Pinti M, Lopalco L, Mussini C, et al.: Stable changes in CD4+ T lymphocyte miRNA expression after exposure to HIV-1. Blood 2012, 119:6259-6267.
  • [42]Seddiki N, Swaminathan S, Phetsouphanh C, Kelleher AD: miR-155 is differentially expressed in Treg subsets, which may explain expression level differences of miR-155 in HIV-1 infected patients. Blood 2012, 119:6396-6397.
  • [43]Witwer KW, Clements JE: Evidence for miRNA expression differences of HIV-1-positive, treatment-naive patients and elite suppressors: a re-analysis. Blood 2012, 119:6395-6396.
  • [44]Schopman NC, van Montfort T, Willemsen M, Knoepfel SA, Pollakis G, van Kampen A, Sanders RW, Haasnoot J, Berkhout B: Selective packaging of cellular miRNAs in HIV-1 particles. Virus Res 2012, 169:438-447.
  • [45]Chang ST, Thomas MJ, Sova P, Green RR, Palermo RE, Katze MG: Next-generation sequencing of small RNAs from HIV-infected cells identifies phased microrna expression patterns and candidate novel microRNAs differentially expressed upon infection. MBio 2013, 4:e00549-12.
  • [46]Swaminathan S, Murray DD, Kelleher AD: miRNAs and HIV: unforeseen determinants of host-pathogen interaction. Immunol Rev 2013, 254:265-280.
  • [47]Swaminathan S, Suzuki K, Seddiki N, Kaplan W, Cowley MJ, Hood CL, Clancy JL, Murray DD, Mendez C, Gelgor L, et al.: Differential regulation of the Let-7 family of microRNAs in CD4+ T cells alters IL-10 expression. J Immunol 2012, 188:6238-6246.
  • [48]Sung TL, Rice AP: miR-198 inhibits HIV-1 gene expression and replication in monocytes and its mechanism of action appears to involve repression of cyclin T1. PLoS Pathog 2009, 5:e1000263.
  • [49]Huang J, Wang F, Argyris E, Chen K, Liang Z, Tian H, Huang W, Squires K, Verlinghieri G, Zhang H: Cellular microRNAs contribute to HIV-1 latency in resting primary CD4+ T lymphocytes. Nat Med 2007, 13:1241-1247.
  • [50]Chiang K, Rice AP: MicroRNA-mediated restriction of HIV-1 in resting CD4+ T cells and monocytes. Viruses 2012, 4:1390-1409.
  • [51]Wang X, Ye L, Hou W, Zhou Y, Wang YJ, Metzger DS, Ho WZ: Cellular microRNA expression correlates with susceptibility of monocytes/macrophages to HIV-1 infection. Blood 2009, 113:671-674.
  • [52]Sisk JM, Clements JE, Witwer KW: miRNA profiles of monocyte-lineage cells are consistent with complicated roles in HIV-1 restriction. Viruses 2012, 4:1844-1864.
  • [53]Hariharan M, Scaria V, Pillai B, Brahmachari SK: Targets for human encoded microRNAs in HIV genes. Biochem Biophys Res Commun 2005, 337:1214-1218.
  • [54]Nathans R, Chu CY, Serquina AK, Lu CC, Cao H, Rana TM: Cellular microRNA and P bodies modulate host-HIV-1 interactions. Mol Cell 2009, 34:696-709.
  • [55]Sun G, Li H, Wu X, Covarrubias M, Scherer L, Meinking K, Luk B, Chomchan P, Alluin J, Gombart AF, Rossi JJ: Interplay between HIV-1 infection and host microRNAs. Nucleic Acids Res 2012, 40:2181-2196.
  • [56]Houzet L, Klase Z, Yeung ML, Wu A, Le SY, Quinones M, Jeang KT: The extent of sequence complementarity correlates with the potency of cellular miRNA-mediated restriction of HIV-1. Nucleic Acids Res 2012, 40:11684-11696.
  • [57]Zink MC, Suryanarayana K, Mankowski JL, Shen A, Piatak M Jr, Spelman JP, Carter DL, Adams RJ, Lifson JD, Clements JE: High viral load in the cerebrospinal fluid and brain correlates with severity of simian immunodeficiency virus encephalitis. J Virol 1999, 73:10480-10488.
  • [58]Bazzoni F, Rossato M, Fabbri M, Gaudiosi D, Mirolo M, Mori L, Tamassia N, Mantovani A, Cassatella MA, Locati M: Induction and regulatory function of miR-9 in human monocytes and neutrophils exposed to proinflammatory signals. Proc Natl Acad Sci U S A 2009, 106:5282-5287.
  • [59]Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS: MicroRNA targets in Drosophila. Genome Biol 2003, 5:R1. BioMed Central Full Text
  • [60]Rehmsmeier M, Steffen P, Hochsmann M, Giegerich R: Fast and effective prediction of microRNA/target duplexes. RNA 2004, 10:1507-1517.
  • [61]Schmitt MJ, Philippidou D, Reinsbach SE, Margue C, Wienecke-Baldacchino A, Nashan D, Behrmann I, Kreis S: Interferon-gamma-induced activation of signal transducer and activator of transcription 1 (STAT1) up-regulates the tumor suppressing microRNA-29 family in melanoma cells. Cell Commun Signal 2012, 10:41. BioMed Central Full Text
  • [62]Jurkin J, Schichl YM, Koeffel R, Bauer T, Richter S, Konradi S, Gesslbauer B, Strobl H: miR-146a is differentially expressed by myeloid dendritic cell subsets and desensitizes cells to TLR2-dependent activation. J Immunol 2010, 184:4955-4965.
  • [63]Mullokandov G, Baccarini A, Ruzo A, Jayaprakash AD, Tung N, Israelow B, Evans MJ, Sachidanandam R, Brown BD: High-throughput assessment of microRNA activity and function using microRNA sensor and decoy libraries. Nat Methods 2012, 9:840-846.
  • [64]Whisnant AW, Bogerd HP, Flores O, Ho P, Powers JG, Sharova N, Stevenson M, Chen CH, Cullen BR: In-depth analysis of the interaction of HIV-1 with cellular microRNA biogenesis and effector mechanisms. MBio 2013, 4:e000193.
  • [65]Yarilina A, Park-Min KH, Antoniv T, Hu X, Ivashkiv LB: TNF activates an IRF1-dependent autocrine loop leading to sustained expression of chemokines and STAT1-dependent type I interferon-response genes. Nat Immunol 2008, 9:378-387.
  • [66]Cullen BR: Viruses and microRNAs: RISCy interactions with serious consequences. Genes Dev 2011, 25:1881-1894.
  • [67]Witwer KW, Sarbanes SL, Liu J, Clements JE: A plasma microRNA signature of acute lentiviral infection: biomarkers of central nervous system disease. AIDS 2011, 25:2057-2067.
  • [68]Lee YS, Pressman S, Andress AP, Kim K, White JL, Cassidy JJ, Li X, Lubell K, Lim do H, Cho IS, et al.: Silencing by small RNAs is linked to endosomal trafficking. Nat Cell Biol 2009, 11:1495.
  • [69]Baccarini A, Chauhan H, Gardner TJ, Jayaprakash AD, Sachidanandam R, Brown BD: Kinetic analysis reveals the fate of a microRNA following target regulation in mammalian cells. Curr Biol 2011, 21:369-376.
  • [70]Mott JL, Kurita S, Cazanave SC, Bronk SF, Werneburg NW, Fernandez-Zapico ME: Transcriptional suppression of mir-29b-1/mir-29a promoter by c-Myc, hedgehog, and NF-kappaB. J Cell Biochem 2010, 110:1155-1164.
  • [71]Taganov KD, Boldin MP, Chang KJ, Baltimore D: NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci USA 2006, 103:12481-12486.
  • [72]Ma F, Xu S, Liu X, Zhang Q, Xu X, Liu M, Hua M, Li N, Yao H, Cao X: The microRNA miR-29 controls innate and adaptive immune responses to intracellular bacterial infection by targeting interferon-gamma. Nat Immunol 2011, 12:861-869.
  • [73]Chiang K, Sung TL, Rice AP: Regulation of cyclin T1 and HIV-1 replication by microRNAs in resting CD4+ T lymphocytes. J Virol 2012, 86:3244-3252.
  • [74]Wan HY, Guo LM, Liu T, Liu M, Li X, Tang H: Regulation of the transcription factor NF-kappaB1 by microRNA-9 in human gastric adenocarcinoma. Mol Cancer 2010, 9:16. BioMed Central Full Text
  • [75]Bhaumik D, Scott GK, Schokrpur S, Patil CK, Orjalo AV, Rodier F, Lithgow GJ, Campisi J: MicroRNAs miR-146a/b negatively modulate the senescence-associated inflammatory mediators IL-6 and IL-8. Aging (Albany NY) 2009, 1:402-411.
  • [76]Hou J, Wang P, Lin L, Liu X, Ma F, An H, Wang Z, Cao X: MicroRNA-146a feedback inhibits RIG-I-dependent Type I IFN production in macrophages by targeting TRAF6, IRAK1, and IRAK2. J Immunol 2009, 183:2150-2158.
  • [77]Tang Y, Luo X, Cui H, Ni X, Yuan M, Guo Y, Huang X, Zhou H, de Vries N, Tak PP, et al.: MicroRNA-146A contributes to abnormal activation of the type I interferon pathway in human lupus by targeting the key signaling proteins. Arthritis Rheum 2009, 60:1065-1075.
  • [78]Williams AE, Perry MM, Moschos SA, Larner-Svensson HM, Lindsay MA: Role of miRNA-146a in the regulation of the innate immune response and cancer. Biochem Soc Trans 2008, 36:1211-1215.
  • [79]Punj V, Matta H, Schamus S, Tamewitz A, Anyang B, Chaudhary PM: Kaposi’s sarcoma-associated herpesvirus-encoded viral FLICE inhibitory protein (vFLIP) K13 suppresses CXCR4 expression by upregulating miR-146a. Oncogene 2010, 29:1835-1844.
  • [80]Dou H, Grotepas CB, McMillan JM, Destache CJ, Chaubal M, Werling J, Kipp J, Rabinow B, Gendelman HE: Macrophage delivery of nanoformulated antiretroviral drug to the brain in a murine model of neuroAIDS. J Immunol 2009, 183:661-669.
  • [81]Obad S, dos Santos CO, Petri A, Heidenblad M, Broom O, Ruse C, Fu C, Lindow M, Stenvang J, Straarup EM, et al.: Silencing of microRNA families by seed-targeting tiny LNAs. Nat Genet 2011, 43:371-378.
  • [82]Dudaronek JM, Barber SA, Clements JE: CUGBP1 is required for IFNbeta-mediated induction of dominant-negative CEBPbeta and suppression of SIV replication in macrophages. J Immunol 2007, 179:7262-7269.
  文献评价指标  
  下载次数:23次 浏览次数:7次