Molecular Neurodegeneration | |
Stem cell derived basal forebrain cholinergic neurons from Alzheimer’s disease patients are more susceptible to cell death | |
John A Kessler2  Richard J Miller1  Liuliu Pan2  Abdelhak Belmadani1  Bula J Bhattacharyya1  Lishu Duan2  | |
[1] Molecular Pharmacology and Biological Chemistry, University’s Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL 60611-3008, USA;Departments of Neurology, Northwestern University’s Feinberg School of Medicine, Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL 60611-3008, USA | |
关键词: Calcium abnormalities; Glutamate excitotoxicity; Aβ rise; Aβ42/40 ratio; Basal forebrain cholinergic neurons; Human induced pluripotent stem cells; Alzheimer’s disease; | |
Others : 861831 DOI : 10.1186/1750-1326-9-3 |
|
received in 2013-07-04, accepted in 2014-01-03, 发布年份 2014 | |
【 摘 要 】
An early substantial loss of basal forebrain cholinergic neurons (BFCNs) is a constant feature of Alzheimer’s disease (AD) and is associated with deficits in spatial learning and memory. Induced pluripotent stem cells (iPSCs) derived from patients with AD as well as from normal controls could be efficiently differentiated into neurons with characteristics of BFCNs. We used BFCNs derived from iPSCs to model sporadic AD with a focus on patients with ApoE3/E4 genotypes (AD-E3/E4). BFCNs derived from AD-E3/E4 patients showed typical AD biochemical features evidenced by increased Aβ42/Aβ40 ratios. AD-E3/E4 neurons also exhibited altered responses to treatment with γ-secretase inhibitors compared to control BFCNs or neurons derived from patients with familial AD. BFCNs from patients with AD-E3/E4 also exhibited increased vulnerability to glutamate-mediated cell death which correlated with increased intracellular free calcium upon glutamate exposure. The ability to generate BFCNs with an AD phenotype is a significant step both for understanding disease mechanisms and for facilitating screening for agents that promote synaptic integrity and neuronal survival.
【 授权许可】
2014 Duan et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20140725004447920.pdf | 1871KB | download | |
47KB | Image | download | |
55KB | Image | download | |
94KB | Image | download | |
81KB | Image | download | |
129KB | Image | download | |
261KB | Image | download |
【 图 表 】
【 参考文献 】
- [1]Roses AD: Apolipoprotein E alleles as risk factors in Alzheimer’s disease. Annu Rev Med 1996, 47:387-400.
- [2]Bertram L, Tanzi RE: Genome-wide association studies in Alzheimer’s disease. Hum Mol Genet 2009, 18:R137-R145.
- [3]Tomlinson BE, Blessed G, Roth M: Observations on the brains of demented old people. J Neurol Sci 1970, 11:205-242.
- [4]Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K: Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci USA 1985, 82:4245-4249.
- [5]Hardy J: The relationship between amyloid and tau. J Mol Neurosci 2003, 20:203-206.
- [6]Seubert P, Vigo-Pelfrey C, Esch F, Lee M, Dovey H, Davis D, Sinha S, Schlossmacher M, Whaley J, Swindlehurst C, et al.: Isolation and quantification of soluble Alzheimer’s beta-peptide from biological fluids. Nature 1992, 359:325-327.
- [7]Iwatsubo T, Odaka A, Suzuki N, Mizusawa H, Nukina N, Ihara Y: Visualization of A beta 42(43) and A beta 40 in senile plaques with end-specific A beta monoclonals: evidence that an initially deposited species is A beta 42(43). Neuron 1994, 13:45-53.
- [8]Whitehouse PJ, Price DL, Struble RG, Clark AW, Coyle JT, Delon MR: Alzheimer’s disease and senile dementia: loss of neurons in the basal forebrain. Science 1982, 215:1237-1239.
- [9]West MJ, Coleman PD, Flood DG, Troncoso JC: Differences in the pattern of hippocampal neuronal loss in normal ageing and Alzheimer’s disease. Lancet 1994, 344:769-772.
- [10]Mesulam M: The cholinergic lesion of Alzheimer’s disease: pivotal factor or side show? Learn Mem 2004, 11:43-49.
- [11]Mufson EJ, Ma SY, Dills J, Cochran EJ, Leurgans S, Wuu J, Bennett DA, Jaffar S, Gilmor ML, Levey AI, Kordower JH: Loss of basal forebrain P75(NTR) immunoreactivity in subjects with mild cognitive impairment and Alzheimer’s disease. J Comp Neurol 2002, 443:136-153.
- [12]Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S: Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007, 131:861-872.
- [13]Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, et al.: Induced pluripotent stem cell lines derived from human somatic cells. Science 2007, 318:1917-1920.
- [14]Yagi T, Ito D, Okada Y, Akamatsu W, Nihei Y, Yoshizaki T, Yamanaka S, Okano H, Suzuki N: Modeling familial Alzheimer’s disease with induced pluripotent stem cells. Hum Mol Genet 2011, 20:4530-4539.
- [15]Israel MA, Yuan SH, Bardy C, Reyna SM, Mu Y, Herrera C, Hefferan MP, Van Gorp S, Nazor KL, Boscolo FS, et al.: Probing sporadic and familial Alzheimer’s disease using induced pluripotent stem cells. Nature 2012, 482:216-220.
- [16]Kondo T, Asai M, Tsukita K, Kutoku Y, Ohsawa Y, Sunada Y, Imamura K, Egawa N, Yahata N, Okita K, et al.: Modeling Alzheimer’s disease with iPSCs reveals stress phenotypes associated with intracellular Abeta and differential drug responsiveness. Cell Stem Cell 2013, 12:487-496.
- [17]Bissonnette CJ, Lyass L, Bhattacharyya BJ, Belmadani A, Miller RJ, Kessler JA: The controlled generation of functional basal forebrain cholinergic neurons from human embryonic stem cells. Stem Cells 2011, 29:802-811.
- [18]Chin MH, Mason MJ, Xie W, Volinia S, Singer M, Peterson C, Ambartsumyan G, Aimiuwu O, Richter L, Zhang J, et al.: Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures. Cell Stem Cell 2009, 5:111-123.
- [19]Tucker ES, Segall S, Gopalakrishna D, Wu Y, Vernon M, Polleux F, Lamantia AS: Molecular specification and patterning of progenitor cells in the lateral and medial ganglionic eminences. J Neurosci 2008, 28:9504-9518.
- [20]Schambra UB, Sulik KK, Petrusz P, Lauder JM: Ontogeny of cholinergic neurons in the mouse forebrain. J Comp Neurol 1989, 288:101-122.
- [21]Katoh Y, Katoh M: Hedgehog signaling pathway and gastrointestinal stem cell signaling network (review). Int J Mol Med 2006, 18:1019-1023.
- [22]Zhang Z, Verheyden JM, Hassell JA, Sun X: FGF-regulated Etv genes are essential for repressing Shh expression in mouse limb buds. Dev Cell 2009, 16:607-613.
- [23]Faedo A, Borello U, Rubenstein JL: Repression of Fgf signaling by sprouty1-2 regulates cortical patterning in two distinct regions and times. J Neurosci 2010, 30:4015-4023.
- [24]Zhao Y, Marin O, Hermesz E, Powell A, Flames N, Palkovits M, Rubenstein JL, Westphal H: The LIM-homeobox gene Lhx8 is required for the development of many cholinergic neurons in the mouse forebrain. Proc Natl Acad Sci USA 2003, 100:9005-9010.
- [25]Fragkouli A, Hearn C, Errington M, Cooke S, Grigoriou M, Bliss T, Stylianopoulou F, Pachnis V: Loss of forebrain cholinergic neurons and impairment in spatial learning and memory in LHX7-deficient mice. Eur J Neurosci 2005, 21:2923-2938.
- [26]Mufson EJ, Ginsberg SD, Ikonomovic MD, DeKosky ST: Human cholinergic basal forebrain: chemoanatomy and neurologic dysfunction. J Chem Neuroanat 2003, 26:233-242.
- [27]Magno L, Catanzariti V, Nitsch R, Krude H, Naumann T: Ongoing expression of Nkx2.1 in the postnatal mouse forebrain: potential for understanding NKX2.1 haploinsufficiency in humans? Brain Res 2009, 1304:164-186.
- [28]Mattson MP, Chan SL: Neuronal and glial calcium signaling in Alzheimer’s disease. Cell Calcium 2003, 34:385-397.
- [29]Corona C, Pensalfini A, Frazzini V, Sensi SL: New therapeutic targets in Alzheimer’s disease: brain deregulation of calcium and zinc. Cell Death Dis 2011, 2:e176.
- [30]Sattler R, Tymianski M: Molecular mechanisms of calcium-dependent excitotoxicity. J Mol Med 2000, 78:3-13.
- [31]Liu Y, Weick JP, Liu H, Krencik R, Zhang X, Ma L, Zhou GM, Ayala M, Zhang SC: Medial ganglionic eminence-like cells derived from human embryonic stem cells correct learning and memory deficits. Nat Biotechnol 2013, 31:440-447.
- [32]Bibel M, Richter J, Schrenk K, Tucker KL, Staiger V, Korte M, Goetz M, Barde YA: Differentiation of mouse embryonic stem cells into a defined neuronal lineage. Nat Neurosci 2004, 7:1003-1009.
- [33]Shi Y, Kirwan P, Livesey FJ: Directed differentiation of human pluripotent stem cells to cerebral cortex neurons and neural networks. Nat Protoc 2012, 7:1836-1846.
- [34]Elkabetz Y, Panagiotakos G, Al Shamy G, Socci ND, Tabar V, Studer L: Human ES cell-derived neural rosettes reveal a functionally distinct early neural stem cell stage. Genes Dev 2008, 22:152-165.
- [35]Kim J, Basak JM, Holtzman DM: The role of apolipoprotein E in Alzheimer’s disease. Neuron 2009, 63:287-303.
- [36]Ooi L, Sidhu K, Poljak A, Sutherland G, O’Connor MD, Sachdev P, Munch G: Induced pluripotent stem cells as tools for disease modelling and drug discovery in Alzheimer’s disease. J Neural Transm 2013, 120:103-111.
- [37]Schmechel DE, Saunders AM, Strittmatter WJ, Crain BJ, Hulette CM, Joo SH, Pericak-Vance MA, Goldgaber D, Roses AD: Increased amyloid beta-peptide deposition in cerebral cortex as a consequence of apolipoprotein E genotype in late-onset Alzheimer disease. Proc Natl Acad Sci USA 1993, 90:9649-9653.
- [38]Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, Roses AD, Haines JL, Pericak-Vance MA: Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 1993, 261:921-923.
- [39]Tiraboschi P, Hansen LA, Masliah E, Alford M, Thal LJ, Corey-Bloom J: Impact of APOE genotype on neuropathologic and neurochemical markers of Alzheimer disease. Neurology 2004, 62:1977-1983.
- [40]Bales KR, Liu F, Wu S, Lin S, Koger D, DeLong C, Hansen JC, Sullivan PM, Paul SM: Human APOE isoform-dependent effects on brain beta-amyloid levels in PDAPP transgenic mice. J Neurosci 2009, 29:6771-6779.
- [41]Holtzman DM, Bales KR, Tenkova T, Fagan AM, Parsadanian M, Sartorius LJ, Mackey B, Olney J, McKeel D, Wozniak D, Paul SM: Apolipoprotein E isoform-dependent amyloid deposition and neuritic degeneration in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci USA 2000, 97:2892-2897.
- [42]Liraz O, Boehm-Cagan A, Michaelson DM: ApoE4 induces Abeta42, tau, and neuronal pathology in the hippocampus of young targeted replacement apoE4 mice. Mol neurodegeneration 2013, 8:16. BioMed Central Full Text
- [43]Wyss-Coray T, Loike JD, Brionne TC, Lu E, Anankov R, Yan F, Silverstein SC, Husemann J: Adult mouse astrocytes degrade amyloid-beta in vitro and in situ. Nat Med 2003, 9:453-457.
- [44]Koistinaho M, Lin S, Wu X, Esterman M, Koger D, Hanson J, Higgs R, Liu F, Malkani S, Bales KR, Paul SM: Apolipoprotein E promotes astrocyte colocalization and degradation of deposited amyloid-beta peptides. Nat Med 2004, 10:719-726.
- [45]Metzger RE, LaDu MJ, Pan JB, Getz GS, Frail DE, Falduto MT: Neurons of the human frontal cortex display apolipoprotein E immunoreactivity: implications for Alzheimer’s disease. J Neuropathol Exp Neurol 1996, 55:372-380.
- [46]Xu PT, Gilbert JR, Qiu HL, Ervin J, Rothrock-Christian TR, Hulette C, Schmechel DE: Specific regional transcription of apolipoprotein E in human brain neurons. Am J Pathol 1999, 154:601-611.
- [47]Wolfe MS, Xia W, Moore CL, Leatherwood DD, Ostaszewski B, Rahmati T, Donkor IO, Selkoe DJ: Peptidomimetic probes and molecular modeling suggest that Alzheimer’s gamma-secretase is an intramembrane-cleaving aspartyl protease. Biochemistry 1999, 38:4720-4727.
- [48]Moore CL, Diehl TS, Selkoe DJ, Wolfe MS: Toward the characterization and identification of gamma-secretases using transition-state analogue inhibitors. Ann N Y Acad Sci 2000, 920:197-205.
- [49]Siemers E, Skinner M, Dean RA, Gonzales C, Satterwhite J, Farlow M, Ness D, May PC: Safety, tolerability, and changes in amyloid beta concentrations after administration of a gamma-secretase inhibitor in volunteers. Clin Neuropharmacol 2005, 28:126-132.
- [50]Zhang L, Song L, Terracina G, Liu Y, Pramanik B, Parker E: Biochemical characterization of the gamma-secretase activity that produces beta-amyloid peptides. Biochemistry 2001, 40:5049-5055.
- [51]Burton CR, Meredith JE, Barten DM, Goldstein ME, Krause CM, Kieras CJ, Sisk L, Iben LG, Polson C, Thompson MW, et al.: The amyloid-beta rise and gamma-secretase inhibitor potency depend on the level of substrate expression. J Biol Chem 2008, 283:22992-23003.
- [52]Nicoll JA, Roberts GW, Graham DI: Amyloid beta-protein, APOE genotype and head injury. Ann N Y Acad Sci 1996, 777:271-275.
- [53]Slooter AJ, Tang MX, van Duijn CM, Stern Y, Ott A, Bell K, Breteler MM, Van Broeckhoven C, Tatemichi TK, Tycko B, et al.: Apolipoprotein E epsilon4 and the risk of dementia with stroke. A population-based investigation. JAMA 1997, 277:818-821.
- [54]Lipton SA, Rosenberg PA: Excitatory amino acids as a final common pathway for neurologic disorders. N Engl J Med 1994, 330:613-622.
- [55]Sheng H, Laskowitz DT, Bennett E, Schmechel DE, Bart RD, Saunders AM, Pearlstein RD, Roses AD, Warner DS: Apolipoprotein E isoform-specific differences in outcome from focal ischemia in transgenic mice. J Cereb Blood Flow Metab 1998, 18:361-366.
- [56]Zhang XM, Mao XJ, Zhang HL, Zheng XY, Pham T, Adem A, Winblad B, Mix E, Zhu J: Overexpression of apolipoprotein E4 increases kainic-acid-induced hippocampal neurodegeneration. Exp Neurol 2012, 233:323-332.
- [57]Jordan J, Galindo MF, Miller RJ, Reardon CA, Getz GS, LaDu MJ: Isoform-specific effect of apolipoprotein E on cell survival and beta-amyloid-induced toxicity in rat hippocampal pyramidal neuronal cultures. J Neurosci 1998, 18:195-204.
- [58]Lendon CL, Han BH, Salimi K, Fagan AM, Behrens MI, Muller MC, Holtzman DM: No effect of apolipoprotein E on neuronal cell death due to excitotoxic and apoptotic agents in vitro and neonatal hypoxic ischaemia in vivo. Eur J Neurosci 2000, 12:2235-2242.
- [59]Buttini M, Orth M, Bellosta S, Akeefe H, Pitas RE, Wyss-Coray T, Mucke L, Mahley RW: Expression of human apolipoprotein E3 or E4 in the brains of Apoe−/− mice: isoform-specific effects on neurodegeneration. J Neurosci 1999, 19:4867-4880.
- [60]Buttini M, Masliah E, Yu GQ, Palop JJ, Chang S, Bernardo A, Lin C, Wyss-Coray T, Huang Y, Mucke L: Cellular source of apolipoprotein E4 determines neuronal susceptibility to excitotoxic injury in transgenic mice. Am J Pathol 2010, 177:563-569.
- [61]Wang XS, Gruenstein E: Rapid elevation of neuronal cytoplasmic calcium by apolipoprotein E peptide. J Cell Physiol 1997, 173:73-83.
- [62]Tolar M, Keller JN, Chan S, Mattson MP, Marques MA, Crutcher KA: Truncated apolipoprotein E (ApoE) causes increased intracellular calcium and may mediate ApoE neurotoxicity. J Neurosci 1999, 19:7100-7110.
- [63]Muller W, Meske V, Berlin K, Scharnagl H, Marz W, Ohm TG: Apolipoprotein E isoforms increase intracellular Ca2+ differentially through a omega-agatoxin IVa-sensitive Ca2 + −channel. Brain Pathol 1998, 8:641-653.
- [64]Veinbergs I, Everson A, Sagara Y, Masliah E: Neurotoxic effects of apolipoprotein E4 are mediated via dysregulation of calcium homeostasis. J Neurosci Res 2002, 67:379-387.
- [65]Sattler R, Tymianski M: Molecular mechanisms of glutamate receptor-mediated excitotoxic neuronal cell death. Mol Neurobiol 2001, 24:107-129.
- [66]Tymianski M, Charlton MP, Carlen PL, Tator CH: Source specificity of early calcium neurotoxicity in cultured embryonic spinal neurons. J Neurosci 1993, 13:2085-2104.
- [67]Sattler R, Charlton MP, Hafner M, Tymianski M: Distinct influx pathways, not calcium load, determine neuronal vulnerability to calcium neurotoxicity. J Neurochem 1998, 71:2349-2364.