期刊论文详细信息
Molecular Pain
Reduced basal ganglia μ-opioid receptor availability in trigeminal neuropathic pain: A pilot study
Alexandre F DaSilva4  Jon-Kar Zubieta4  Maurice Borges Vincent5  André Antonio Monteiro2  Eric C Maslowski1  Misty Dawn Deboer3  Tiffany M Love4  Thiago Dias Nascimento3  Ilkka Kristian Martikainen4  Marcos Fabio DosSantos5 
[1] UM3D Lab, Digital Media Commons/MLibrary, University of Michigan, Michigan, USA;Faculdade de Odontologia, Universidade Federal do Rio de Janeiro, Federal do Rio de Janeiro, Brazil;Headache & Orofacial Pain Effort (H.O.P.E.), Department of Biologic and Materials Sciences and MCOHR, School of Dentistry, University of Michigan, Michigan, Ann Arbor, MI 48109-5720, USA;Translational Neuroimaging Laboratory, Molecular and Behavioral Neuroscience Institute (MBNI), University of Michigan, Michigan, Ann Arbor, MI 48109-5720, USA;Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Federal do Rio de Janeiro, Brazil
关键词: Positron emission tomography;    Chronic pain;    Neuroplasticity;    Opioid system;    Trigeminal Neuropathic Pain;   
Others  :  863357
DOI  :  10.1186/1744-8069-8-74
 received in 2012-06-07, accepted in 2012-09-07,  发布年份 2012
PDF
【 摘 要 】

Background

Although neuroimaging techniques have provided insights into the function of brain regions involved in Trigeminal Neuropathic Pain (TNP) in humans, there is little understanding of the molecular mechanisms affected during the course of this disorder. Understanding these processes is crucial to determine the systems involved in the development and persistence of TNP.

Findings

In this study, we examined the regional μ-opioid receptor (μOR) availability in vivo (non-displaceable binding potential BPND) of TNP patients with positron emission tomography (PET) using the μOR selective radioligand [11C]carfentanil. Four TNP patients and eight gender and age-matched healthy controls were examined with PET. Patients with TNP showed reduced μOR BPND in the left nucleus accumbens (NAc), an area known to be involved in pain modulation and reward/aversive behaviors. In addition, the μOR BPND in the NAc was negatively correlated with the McGill sensory and total pain ratings in the TNP patients.

Conclusions

Our findings give preliminary evidence that the clinical pain in TNP patients can be related to alterations in the endogenous μ-opioid system, rather than only to the peripheral pathology. The decreased availability of μORs found in TNP patients, and its inverse relationship to clinical pain levels, provide insights into the central mechanisms related to this condition. The results also expand our understanding about the impact of chronic pain on the limbic system.

【 授权许可】

   
2012 DosSantos et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140725041630419.pdf 1014KB PDF download
51KB Image download
63KB Image download
【 图 表 】

【 参考文献 】
  • [1]DaSilva AF, DosSantos MF: The role of sensory fiber demography in trigeminal and postherpetic neuralgias. J Dent Res 2012, 91:17-24.
  • [2]DaSilva AF, Becerra L, Pendse G, Chizh B, Tully S, Borsook D: Colocalized structural and functional changes in the cortex of patients with trigeminal neuropathic pain. PLoS One 2008, 3:e3396.
  • [3]Zubieta J, Smith Y, Bueller J, Xu Y, Kilbourn M, Jewett D, Meyer C, Koeppe R, Stohler C: Regional mu opioid receptor regulation of sensory and affective dimensions of pain. Science 2001, 293:311-315.
  • [4]Jones AK, Cunningham VJ, Ha-Kawa S, Fujiwara T, Luthra SK, Silva S, Derbyshire S, Jones T: Changes in central opioid receptor binding in relation to inflammation and pain in patients with rheumatoid arthritis. Br J Rheumatol 1994, 33:909-916.
  • [5]Maarrawi J, Peyron R, Mertens P, Costes N, Magnin M, Sindou M, Laurent B, Garcia-Larrea L: Differential brain opioid receptor availability in central and peripheral neuropathic pain. Pain 2007, 127:183-194.
  • [6]Harris RE, Clauw DJ, Scott DJ, McLean SA, Gracely RH, Zubieta JK: Decreased central mu-opioid receptor availability in fibromyalgia. J Neurosci 2007, 27:10000-10006.
  • [7]Klega A, Eberle T, Buchholz HG, Maus S, Maihöfner C, Schreckenberger M, Birklein F: Central opioidergic neurotransmission in complex regional pain syndrome. Neurology 2010, 75:129-136.
  • [8]Society IH: The International Classification of Headache Disorders. Cephalagia 2004, 24:1-160.
  • [9]Okeson J: Orofacial Pain: guidelines for assessment, classification, and management/ the American Academy of Orofacial Pain. Carol Stream: Quitessencen Publishing Co; 1996.
  • [10]Taxonomy ITFo: Classification of Chronic Pain. IASP Press: Second Edition ed. Seattle; 1994.
  • [11]Melzack R: The McGill Pain Questionnaire: major properties and scoring methods. Pain 1975, 1:277-299.
  • [12]DaSilva: Somatotopic activation in the human trigeminal pain pathway. Harvard University, School of Dental Medicine: PhD thesis; 2002.
  • [13]Dannals RF, Ravert HT, Frost JJ, Wilson AA, Burns HD, Wagner HN: Radiosynthesis of an opiate receptor binding radiotracer: [11C]carfentanil. Int J Appl Radiat Isot 1985, 36:303-306.
  • [14]Jewett DM: A simple synthesis of [11C]carfentanil using an extraction disk instead of HPLC. Nucl Med Biol 2001, 28:733-734.
  • [15]Logan J, Fowler JS, Volkow ND, Wang GJ, Ding YS, Alexoff DL: Distribution volume ratios without blood sampling from graphical analysis of PET data. J Cereb Blood Flow Metab 1996, 16:834-840.
  • [16]Sprenger T, Willoch F, Miederer M, Schindler F, Valet M, Berthele A, Spilker ME, Förderreuther S, Straube A, Stangier I, et al.: Opioidergic changes in the pineal gland and hypothalamus in cluster headache: a ligand PET study. Neurology 2006, 66:1108-1110.
  • [17]Willoch F, Schindler F, Wester HJ, Empl M, Straube A, Schwaiger M, Conrad B, Tölle TR: Central poststroke pain and reduced opioid receptor binding within pain processing circuitries: a [11C]diprenorphine PET study. Pain 2004, 108:213-220.
  • [18]Jones AK, Watabe H, Cunningham VJ, Jones T: Cerebral decreases in opioid receptor binding in patients with central neuropathic pain measured by [11C]diprenorphine binding and PET. Eur J Pain 2004, 8:479-485.
  • [19]Jones AK, Kitchen ND, Watabe H, Cunningham VJ, Jones T, Luthra SK, Thomas DG: Measurement of changes in opioid receptor binding in vivo during trigeminal neuralgic pain using [11C] diprenorphine and positron emission tomography. J Cereb Blood Flow Metab 1999, 19:803-808.
  • [20]Love TM, Stohler CS, Zubieta JK: Positron emission tomography measures of endogenous opioid neurotransmission and impulsiveness traits in humans. Arch Gen Psychiatry 2009, 66:1124-1134.
  • [21]Mogenson GJ, Yang CR: The contribution of basal forebrain to limbic-motor integration and the mediation of motivation to action. Adv Exp Med Biol 1991, 295:267-290.
  • [22]Cooper JC, Knutson B: Valence and salience contribute to nucleus accumbens activation. Neuroimage 2008, 39:538-547.
  • [23]Becerra L, Borsook D: Signal valence in the nucleus accumbens to pain onset and offset. Eur J Pain 2008, 12:866-869.
  • [24]Scott DJ, Stohler CS, Egnatuk CM, Wang H, Koeppe RA, Zubieta JK: Individual differences in reward responding explain placebo-induced expectations and effects. Neuron 2007, 55:325-336.
  • [25]Gear RW, Levine JD: Antinociception produced by an ascending spino-supraspinal pathway. J Neurosci 1995, 15:3154-3161.
  • [26]Gear RW, Levine JD: Nucleus accumbens facilitates nociception. Exp Neurol 2011, 229:502-506.
  • [27]Imai S, Saeki M, Yanase M, Horiuchi H, Abe M, Narita M, Kuzumaki N, Suzuki T: Change in microRNAs associated with neuronal adaptive responses in the nucleus accumbens under neuropathic pain. J Neurosci 2011, 31:15294-15299.
  • [28]Scott DJ, Heitzeg MM, Koeppe RA, Stohler CS, Zubieta JK: Variations in the human pain stress experience mediated by ventral and dorsal basal ganglia dopamine activity. J Neurosci 2006, 26:10789-10795.
  • [29]Gustin SM, Peck CC, Wilcox SL, Nash PG, Murray GM, Henderson LA: Different pain, different brain: thalamic anatomy in neuropathic and non-neuropathic chronic pain syndromes. J Neurosci 2011, 31:5956-5964.
  • [30]Baliki MN, Geha PY, Fields HL, Apkarian AV: Predicting value of pain and analgesia: nucleus accumbens response to noxious stimuli changes in the presence of chronic pain. Neuron 2010, 66:149-160.
  • [31]Zubieta JK: Pain signal as threat and reward. Neuron 2010, 66:6-7.
  • [32]Harris RE, Zubieta JK, Scott DJ, Napadow V, Gracely RH, Clauw DJ: Traditional Chinese acupuncture and placebo (sham) acupuncture are differentiated by their effects on mu-opioid receptors (MORs). Neuroimage 2009, 47:1077-1085.
  • [33]Fields HL: Understanding how opioids contribute to reward and analgesia. Reg Anesth Pain Med 2007, 32:242-246.
  • [34]Leknes S, Tracey I: A common neurobiology for pain and pleasure. Nat Rev Neurosci 2008, 9:314-320.
  文献评价指标  
  下载次数:16次 浏览次数:7次