期刊论文详细信息
Neural Development
Genetic chimeras reveal the autonomy requirements for Vsx2 in embryonic retinal progenitor cells
Edward M Levine1  Sanghee Yun1  Anna M Clark3  Amanda M Leung1  Massiell L German3  Crystal L Sigulinsky2 
[1] Department of Neurobiology and Anatomy, University of Utah, 20 North 1900 East, Salt Lake City 84132, UT, USA;Interdepartmental Program in Neuroscience, University of Utah, 20 North 1900 East, Salt Lake City 84132, UT, USA;Department of Ophthalmology and Visual Sciences, John A Moran Eye Center, University of Utah, 65 Mario Capecchi Drive, Salt Lake City 84132, UT, USA
关键词: Neurogenesis;    Proliferation;    Progenitor;    Chimera;    Retina;    Microphthalmia;    Ocular retardation;    Lhx2;    Mitf;    Vsx2;    Retinal ganglion cell;    Retinal progenitor cell;    Retinal identity;    Retinal development;   
Others  :  1210966
DOI  :  10.1186/s13064-015-0039-5
 received in 2014-10-24, accepted in 2015-04-14,  发布年份 2015
PDF
【 摘 要 】

Background

Vertebrate retinal development is a complex process, requiring the specification and maintenance of retinal identity, proliferative expansion of retinal progenitor cells (RPCs), and their differentiation into retinal neurons and glia. The homeobox gene Vsx2 is expressed in RPCs and required for the proper execution of this retinal program. However, our understanding of the mechanisms by which Vsx2 does this is still rudimentary. To define the autonomy requirements for Vsx2 in the regulation of RPC properties, we generated chimeric mouse embryos comprised of wild-type and Vsx2-deficient cells.

Results

We show that Vsx2 maintains retinal identity in part through the cell-autonomous repression of the retinal pigment epithelium determinant Mitf, and that Lhx2 is required cell autonomously for the ectopic Mitf expression in Vsx2-deficient cells. We also found significant cell-nonautonomous contributions to Vsx2-mediated regulation of RPC proliferation, pointing to an important role for Vsx2 in establishing a growth-promoting extracellular environment. Additionally, we report a cell-autonomous requirement for Vsx2 in controlling when neurogenesis is initiated, indicating that Vsx2 is an important mediator of neurogenic competence. Finally, the distribution of wild-type cells shifted away from RPCs and toward retinal ganglion cell precursors in patches of high Vsx2-deficient cell density to potentially compensate for the lack of fated precursors in these areas.

Conclusions

Through the generation and analysis of genetic chimeras, we demonstrate that Vsx2 utilizes both cell-autonomous and cell-nonautonomous mechanisms to regulate progenitor properties in the embryonic retina. Importantly, Vsx2’s role in regulating Mitf is in part separable from its role in promoting proliferation, and proliferation is excluded as the intrinsic timer that determines when neurogenesis is initiated. These findings highlight the complexity of Vsx2 function during retinal development and provide a framework for identifying the molecular mechanisms mediating these functions.

【 授权许可】

   
2015 Sigulinsky et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150608081435876.pdf 3619KB PDF download
Figure 11. 31KB Image download
Figure 10. 58KB Image download
Figure 9. 133KB Image download
Figure 8. 104KB Image download
Figure 7. 203KB Image download
Figure 6. 101KB Image download
Figure 5. 112KB Image download
Figure 4. 94KB Image download
Figure 3. 124KB Image download
Figure 2. 140KB Image download
Figure 1. 42KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

【 参考文献 】
  • [1]Horsford DJ, Nguyen MT, Sellar GC, Kothary R, Arnheiter H, McInnes RR: Chx10 repression of Mitf is required for the maintenance of mammalian neuroretinal identity. Development 2005, 132(1):177-87.
  • [2]Nguyen M, Arnheiter H: Signaling and transcriptional regulation in early mammalian eye development: a link between FGF and MITF. Development 2000, 127(16):3581-91.
  • [3]Rowan S, Chen CM, Young TL, Fisher DE, Cepko CL: Transdifferentiation of the retina into pigmented cells in ocular retardation mice defines a new function of the homeodomain gene Chx10. Development 2004, 131(20):5139-52.
  • [4]Zou C, Levine EM: Vsx2 controls eye organogenesis and retinal progenitor identity via homeodomain and non-homeodomain residues required for high affinity DNA binding. PLoS Genet 2012, 8(9):e1002924.
  • [5]Fuhrmann S: Eye morphogenesis and patterning of the optic vesicle. Curr Top Dev Biol. 2010, 93:61-84.
  • [6]Fuhrmann S, Zou C, Levine EM. Retinal pigment epithelium development, plasticity, and tissue homeostasis. Exp Eye Res. 2013. doi:10.1016/j.exer.2013.09.003
  • [7]Alexiades MR, Cepko C: Quantitative analysis of proliferation and cell cycle length during development of the rat retina. Dev Dyn 1996, 205(3):293-307.
  • [8]Levine EM, Green ES: Cell-intrinsic regulators of proliferation in vertebrate retinal progenitors. Semin Cell Dev Biol 2004, 15(1):63-74.
  • [9]Livesey FJ, Cepko CL: Vertebrate neural cell-fate determination: lessons from the retina. Nat Rev Neurosci 2001, 2(2):109-18.
  • [10]Young RW: Cell differentiation in the retina of the mouse. Anat Rec 1985, 212(2):199-205.
  • [11]Rapaport DH, Wong LL, Wood ED, Yasumura D, LaVail MM: Timing and topography of cell genesis in the rat retina. J Comp Neurol 2004, 474(2):304-24.
  • [12]Bassett EA, Wallace VA: Cell fate determination in the vertebrate retina. Trends Neurosci 2012, 35(9):565-73.
  • [13]Rapaport DH: Retinal neurogenesis. In Retinal Development. Edited by Sernagor E, Eglen S, Harris B, Wong R. Cambridge University Press, Cambridge; 2006:30-58.
  • [14]Liu IS, Chen JD, Ploder L, Vidgen D, Van der Kooy D, Kalnins VI, et al.: Developmental expression of a novel murine homeobox gene (Chx10): evidence for roles in determination of the neuroretina and inner nuclear layer. Neuron 1994, 13(2):377-93.
  • [15]Yun S, Saijoh Y, Hirokawa KE, Kopinke D, Murtaugh LC, Monuki ES, et al.: Lhx2 links the intrinsic and extrinsic factors that control optic cup formation. Development 2009, 136(23):3895-906.
  • [16]Rowan S, Cepko CL: Genetic analysis of the homeodomain transcription factor Chx10 in the retina using a novel multifunctional BAC transgenic mouse reporter. Dev Biol 2004, 271(2):388-402.
  • [17]Passini MA, Levine EM, Canger AK, Raymond PA, Schechter N: Vsx-1 and Vsx-2: differential expression of two paired-like homeobox genes during zebrafish and goldfish retinogenesis. J Comp Neurol 1997, 388(3):495-505.
  • [18]Passini MA, Raymond PA, Schechter N: Vsx-2, a gene encoding a paired-type homeodomain, is expressed in the retina, hindbrain, and spinal cord during goldfish embryogenesis. Brain Res Dev Brain Res 1998, 109(2):129-35.
  • [19]Ferda Percin E, Ploder LA, Yu JJ, Arici K, Horsford DJ, Rutherford A, et al.: Human microphthalmia associated with mutations in the retinal homeobox gene CHX10. Nat Genet 2000, 25(4):397-401.
  • [20]Bar-Yosef U, Abuelaish I, Harel T, Hendler N, Ofir R, Birk OS: CHX10 mutations cause non-syndromic microphthalmia/anophthalmia in Arab and Jewish kindreds. Hum Genet 2004, 115(4):302-9.
  • [21]Iseri SU, Wyatt AW, Nurnberg G, Kluck C, Nurnberg P, Holder GE, et al.: Use of genome-wide SNP homozygosity mapping in small pedigrees to identify new mutations in VSX2 causing recessive microphthalmia and a semidominant inner retinal dystrophy. Hum Genet 2010, 128(1):51-60.
  • [22]Faiyaz-Ul-Haque M, Zaidi SH, Al-Mureikhi MS, Peltekova I, Tsui LC, Teebi AS: Mutations in the CHX10 gene in non-syndromic microphthalmia/anophthalmia patients from Qatar. Clin Genet 2007, 72(2):164-6.
  • [23]Reis LM, Khan A, Kariminejad A, Ebadi F, Tyler RC, Semina EV: VSX2 mutations in autosomal recessive microphthalmia. Mol Vis. 2011, 17:2527-32.
  • [24]Burkitt Wright EM, Perveen R, Bowers N, Ramsden S, McCann E, O’Driscoll M, et al.: VSX2 in microphthalmia: a novel splice site mutation producing a severe microphthalmia phenotype. Br J Ophthalmol 2010, 94(3):386-8.
  • [25]Zhou J, Kherani F, Bardakjian TM, Katowitz J, Hughes N, Schimmenti LA, et al.: Identification of novel mutations and sequence variants in the SOX2 and CHX10 genes in patients with anophthalmia/microphthalmia. Mol Vis. 2008, 14:583-92.
  • [26]Khan AO, Aldahmesh MA, Noor J, Salem A, Alkuraya FS. Lens Subluxation and Retinal Dysfunction in a Girl with Homozygous VSX2 Mutation. Ophthalmic Genet. 2013. doi:10.3109/13816810.2013.827217
  • [27]Truslove GM: A gene causing ocular retardation in the mouse. J Embryol Exp Morphol. 1962, 10:652-60.
  • [28]Robb RM, Silver J, Sullivan RT: Ocular retardation (or) in the mouse. Invest Ophthalmol Vis Sci 1978, 17(5):468-73.
  • [29]Burmeister M, Novak J, Liang MY, Basu S, Ploder L, Hawes NL, et al.: Ocular retardation mouse caused by Chx10 homeobox null allele: impaired retinal progenitor proliferation and bipolar cell differentiation. Nat Genet 1996, 12(4):376-84.
  • [30]Bone-Larson C, Basu S, Radel JD, Liang M, Perozek T, Kapousta-Bruneau N, et al.: Partial rescue of the ocular retardation phenotype by genetic modifiers. J Neurobiol 2000, 42(2):232-47.
  • [31]Barabino SM, Spada F, Cotelli F, Boncinelli E: Inactivation of the zebrafish homologue of Chx10 by antisense oligonucleotides causes eye malformations similar to the ocular retardation phenotype. Mech Dev 1997, 63(2):133-43.
  • [32]Clark AM, Yun S, Veien ES, Wu YY, Chow RL, Dorsky RI, et al.: Negative regulation of Vsx1 by its paralog Chx10/Vsx2 is conserved in the vertebrate retina. Brain Res. 2008, 1192:99-113.
  • [33]Green ES, Stubbs JL, Levine EM: Genetic rescue of cell number in a mouse model of microphthalmia: interactions between Chx10 and G1-phase cell cycle regulators. Development 2003, 130(3):539-52.
  • [34]Dorval KM, Bobechko BP, Ahmad KF, Bremner R: Transcriptional activity of the paired-like homeodomain proteins CHX10 and VSX1. J Biol Chem 2005, 280(11):10100-8.
  • [35]Dorval KM, Bobechko BP, Fujieda H, Chen S, Zack DJ, Bremner R: CHX10 targets a subset of photoreceptor genes. J Biol Chem 2006, 281(2):744-51.
  • [36]Bharti K, Liu W, Csermely T, Bertuzzi S, Arnheiter H: Alternative promoter use in eye development: the complex role and regulation of the transcription factor MITF. Development 2008, 135(6):1169-78.
  • [37]Reichman S, Kalathur RK, Lambard S, Ait-Ali N, Yang Y, Lardenois A, et al.: The homeobox gene CHX10/VSX2 regulates RdCVF promoter activity in the inner retina. Hum Mol Genet 2010, 19(2):250-61.
  • [38]Osipov VV, Vakhrusheva MP: Coat pigmentation and effect of the ocular retardation gene in the eye of chimeras between or/or and AKR mice. Biull Eksp Biol Med 1982, 93(3):84-6.
  • [39]Osipov VV, Vakhrusheva MP: Clonal analysis of the development of the pigment epithelium of the eye in chimeric or/or––AKR mice. Ontogenez 1984, 15(1):73-80.
  • [40]Kindiakov BN, Koniukhov BV: Mutant gene expression in murine aggregation chimeras. 5. The ocular retardation and fidget genes. Ontogenez 1986, 17(1):47-55.
  • [41]Hadjantonakis AK, Macmaster S, Nagy A: Embryonic stem cells and mice expressing different GFP variants for multiple non-invasive reporter usage within a single animal. BMC Biotechnol. 2002, 2:11.
  • [42]Medina-Martinez O, Amaya-Manzanares F, Liu C, Mendoza M, Shah R, Zhang L, et al.: Cell-autonomous requirement for rx function in the mammalian retina and posterior pituitary. PLoS One 2009, 4(2):e4513.
  • [43]Li S, Goldowitz D, Swanson DJ: The requirement of pax6 for postnatal eye development: evidence from experimental mouse chimeras. Invest Ophthalmol Vis Sci 2007, 48(7):3292-300.
  • [44]Collinson JM, Hill RE, West JD: Different roles for Pax6 in the optic vesicle and facial epithelium mediate early morphogenesis of the murine eye. Development 2000, 127(5):945-56.
  • [45]Collinson JM, Quinn JC, Hill RE, West JD: The roles of Pax6 in the cornea, retina, and olfactory epithelium of the developing mouse embryo. Dev Biol 2003, 255(2):303-12.
  • [46]Quinn JC, West JD, Hill RE: Multiple functions for Pax6 in mouse eye and nasal development. Genes Dev 1996, 10(4):435-46.
  • [47]Oliver ER, Saunders TL, Tarle SA, Glaser T: Ribosomal protein L24 defect in belly spot and tail (Bst), a mouse Minute. Development 2004, 131(16):3907-20.
  • [48]Nakayama A, Nguyen MT, Chen CC, Opdecamp K, Hodgkinson CA, Arnheiter H: Mutations in microphthalmia, the mouse homolog of the human deafness gene MITF, affect neuroepithelial and neural crest-derived melanocytes differently. Mech Dev 1998, 70(1–2):155-66.
  • [49]Bumsted KM, Barnstable CJ: Dorsal retinal pigment epithelium differentiates as neural retina in the microphthalmia (mi/mi) mouse. Invest Ophthalmol Vis Sci 2000, 41(3):903-8.
  • [50]Mangale VS, Hirokawa KE, Satyaki PR, Gokulchandran N, Chikbire S, Subramanian L, et al.: Lhx2 selector activity specifies cortical identity and suppresses hippocampal organizer fate. Science 2008, 319(5861):304-9.
  • [51]Marquardt T, Ashery-Padan R, Andrejewski N, Scardigli R, Guillemot F, Gruss P: Pax6 is required for the multipotent state of retinal progenitor cells. Cell 2001, 105(1):43-55.
  • [52]Kammandel B, Chowdhury K, Stoykova A, Aparicio S, Brenner S, Gruss P: Distinct cis-essential modules direct the time-space pattern of the Pax6 gene activity. Dev Biol 1999, 205(1):79-97.
  • [53]Soriano P: Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet 1999, 21(1):70-1.
  • [54]Gordon PJ, Yun S, Clark AM, Monuki ES, Murtaugh LC, Levine EM: Lhx2 balances progenitor maintenance with neurogenic output and promotes competence state progression in the developing retina. J Neurosci 2013, 33(30):12197-207.
  • [55]Dhomen NS, Balaggan KS, Pearson RA, Bainbridge JW, Levine EM, Ali RR, et al.: Absence of chx10 causes neural progenitors to persist in the adult retina. Invest Ophthalmol Vis Sci 2006, 47(1):386-96.
  • [56]Livne-Bar I, Pacal M, Cheung MC, Hankin M, Trogadis J, Chen D, et al.: Chx10 is required to block photoreceptor differentiation but is dispensable for progenitor proliferation in the postnatal retina. Proc Natl Acad Sci U S A 2006, 103(13):4988-93.
  • [57]Hufnagel RB, Le TT, Riesenberg AL, Brown NL: Neurog2 controls the leading edge of neurogenesis in the mammalian retina. Dev Biol 2010, 340(2):490-503.
  • [58]Sigulinsky CL, Green ES, Clark AM, Levine EM: Vsx2/Chx10 ensures the correct timing and magnitude of Hedgehog signaling in the mouse retina. Dev Biol 2008, 317(2):560-75.
  • [59]Xiang M, Zhou L, Peng YW, Eddy RL, Shows TB, Nathans J: Brn-3b: a POU domain gene expressed in a subset of retinal ganglion cells. Neuron 1993, 11(4):689-701.
  • [60]Erkman L, McEvilly RJ, Luo L, Ryan AK, Hooshmand F, O’Connell SM, et al.: Role of transcription factors Brn-3.1 and Brn-3.2 in auditory and visual system development. Nature 1996, 381(6583):603-6.
  • [61]Gan L, Wang SW, Huang Z, Klein WH: POU domain factor Brn-3b is essential for retinal ganglion cell differentiation and survival but not for initial cell fate specification. Dev Biol 1999, 210(2):469-80.
  • [62]Gan L, Xiang M, Zhou L, Wagner DS, Klein WH, Nathans J: POU domain factor Brn-3b is required for the development of a large set of retinal ganglion cells. Proc Natl Acad Sci U S A 1996, 93(9):3920-5.
  • [63]Qiu F, Jiang H, Xiang M: A comprehensive negative regulatory program controlled by Brn3b to ensure ganglion cell specification from multipotential retinal precursors. J Neurosci 2008, 28(13):3392-403.
  • [64]Elshatory Y, Deng M, Xie X, Gan L: Expression of the LIM-homeodomain protein Isl1 in the developing and mature mouse retina. J Comp Neurol 2007, 503(1):182-97.
  • [65]Elshatory Y, Everhart D, Deng M, Xie X, Barlow RB, Gan L: Islet-1 controls the differentiation of retinal bipolar and cholinergic amacrine cells. J Neurosci 2007, 27(46):12707-20.
  • [66]Dullin JP, Locker M, Robach M, Henningfeld KA, Parain K, Afelik S, et al.: Ptf1a triggers GABAergic neuronal cell fates in the retina. BMC Dev Biol. 2007, 7:110.
  • [67]Fujitani Y, Fujitani S, Luo H, Qiu F, Burlison J, Long Q, et al.: Ptf1a determines horizontal and amacrine cell fates during mouse retinal development. Development 2006, 133(22):4439-50.
  • [68]Nakhai H, Sel S, Favor J, Mendoza-Torres L, Paulsen F, Duncker GI, et al.: Ptf1a is essential for the differentiation of GABAergic and glycinergic amacrine cells and horizontal cells in the mouse retina. Development 2007, 134(6):1151-60.
  • [69]Feng L, Xie X, Joshi PS, Yang Z, Shibasaki K, Chow RL, et al.: Requirement for Bhlhb5 in the specification of amacrine and cone bipolar subtypes in mouse retina. Development 2006, 133(24):4815-25.
  • [70]Nishida A, Furukawa A, Koike C, Tano Y, Aizawa S, Matsuo I, et al.: Otx2 homeobox gene controls retinal photoreceptor cell fate and pineal gland development. Nat Neurosci 2003, 6(12):1255-63.
  • [71]Baas D, Bumsted KM, Martinez JA, Vaccarino FM, Wikler KC, Barnstable CJ: The subcellular localization of Otx2 is cell-type specific and developmentally regulated in the mouse retina. Brain Res Mol Brain Res 2000, 78(1–2):26-37.
  • [72]Bovolenta P, Mallamaci A, Briata P, Corte G, Boncinelli E: Implication of OTX2 in pigment epithelium determination and neural retina differentiation. J Neurosci 1997, 17(11):4243-52.
  • [73]Brittis PA, Meiri K, Dent E, Silver J: The earliest patterns of neuronal differentiation and migration in the mammalian central nervous system. Exp Neurol 1995, 134(1):1-12.
  • [74]Lee MK, Tuttle JB, Rebhun LI, Cleveland DW, Frankfurter A: The expression and posttranslational modification of a neuron-specific beta-tubulin isotype during chick embryogenesis. Cell Motil Cytoskeleton 1990, 17(2):118-32.
  • [75]Das G, Choi Y, Sicinski P, Levine EM: Cyclin D1 fine-tunes the neurogenic output of embryonic retinal progenitor cells. Neural Dev. 2009, 4:15.
  • [76]Rutherford AD, Dhomen N, Smith HK, Sowden JC: Delayed expression of the Crx gene and photoreceptor development in the Chx10-deficient retina. Invest Ophthalmol Vis Sci 2004, 45(2):375-84.
  • [77]Konyukhov BV, Sazhina MV: Interaction of the genes of ocular retardation and microphthalmia in mice. Folia Biol (Praha) 1966, 12(2):116-23.
  • [78]Fu X, Sun H, Klein WH, Mu X: Beta-catenin is essential for lamination but not neurogenesis in mouse retinal development. Dev Biol 2006, 299(2):424-37.
  • [79]Fuhrmann S, Levine EM, Reh TA: Extraocular mesenchyme patterns the optic vesicle during early eye development in the embryonic chick. Development 2000, 127(21):4599-609.
  • [80]Westenskow PD, McKean JB, Kubo F, Nakagawa S, Fuhrmann S: Ectopic Mitf in the embryonic chick retina by co-transfection of beta-catenin and Otx2. Invest Ophthalmol Vis Sci 2010, 51(10):5328-35.
  • [81]Fujimura N, Taketo MM, Mori M, Korinek V, Kozmik Z: Spatial and temporal regulation of Wnt/beta-catenin signaling is essential for development of the retinal pigment epithelium. Dev Biol 2009, 334(1):31-45.
  • [82]Westenskow P, Piccolo S, Fuhrmann S: Beta-catenin controls differentiation of the retinal pigment epithelium in the mouse optic cup by regulating Mitf and Otx2 expression. Development 2009, 136(15):2505-10.
  • [83]Cai Z, Feng GS, Zhang X: Temporal requirement of the protein tyrosine phosphatase Shp2 in establishing the neuronal fate in early retinal development. J Neurosci 2010, 30(11):4110-9.
  • [84]Pittack C, Grunwald GB, Reh TA: Fibroblast growth factors are necessary for neural retina but not pigmented epithelium differentiation in chick embryos. Development 1997, 124(4):805-16.
  • [85]Carreira S, Goodall J, Aksan I, La Rocca SA, Galibert MD, Denat L, et al.: Mitf cooperates with Rb1 and activates p21Cip1 expression to regulate cell cycle progression. Nature 2005, 433(7027):764-9.
  • [86]Lekmine F, Chang CK, Sethakorn N, Das Gupta TK, Salti GI: Role of microphthalmia transcription factor (Mitf) in melanoma differentiation. Biochem Biophys Res Commun 2007, 354(3):830-5.
  • [87]Tsukiji N, Nishihara D, Yajima I, Takeda K, Shibahara S, Yamamoto H: Mitf functions as an in ovo regulator for cell differentiation and proliferation during development of the chick RPE. Dev Biol 2009, 326(2):335-46.
  • [88]Phillips MJ, Perez ET, Martin JM, Reshel ST, Wallace KA, Capowski EE, et al.: Modeling human retinal development with patient-specific induced pluripotent stem cells reveals multiple roles for visual system homeobox 2. Stem Cells 2014, 32(6):1480-92.
  • [89]De Beco S, Ziosi M, Johnston LA: New frontiers in cell competition. Dev Dyn 2012, 241(5):831-41.
  • [90]Neumann CJ, Nuesslein-Volhard C: Patterning of the zebrafish retina by a wave of sonic hedgehog activity. Science 2000, 289(5487):2137-9.
  • [91]Martinez-Morales JR, Del Bene F, Nica G, Hammerschmidt M, Bovolenta P, Wittbrodt J: Differentiation of the vertebrate retina is coordinated by an FGF signaling center. Dev Cell 2005, 8(4):565-74.
  • [92]McCabe KL, Gunther EC, Reh TA: The development of the pattern of retinal ganglion cells in the chick retina: mechanisms that control differentiation. Development 1999, 126(24):5713-24.
  • [93]Kay JN, Link BA, Baier H: Staggered cell-intrinsic timing of ath5 expression underlies the wave of ganglion cell neurogenesis in the zebrafish retina. Development 2005, 132(11):2573-85.
  • [94]Reese BE, Necessary BD, Tam PP, Faulkner-Jones B, Tan SS: Clonal expansion and cell dispersion in the developing mouse retina. Eur J Neurosci 1999, 11(8):2965-78.
  • [95]Lee HY, Wroblewski E, Philips GT, Stair CN, Conley K, Reedy M, et al.: Multiple requirements for Hes 1 during early eye formation. Dev Biol 2005, 284(2):464-78.
  • [96]Tomita K, Ishibashi M, Nakahara K, Ang SL, Nakanishi S, Guillemot F, et al.: Mammalian hairy and Enhancer of split homolog 1 regulates differentiation of retinal neurons and is essential for eye morphogenesis. Neuron 1996, 16(4):723-34.
  • [97]Riesenberg AN, Liu Z, Kopan R, Brown NL: Rbpj cell autonomous regulation of retinal ganglion cell and cone photoreceptor fates in the mouse retina. J Neurosci 2009, 29(41):12865-77.
  • [98]Wang Y, Dakubo GD, Thurig S, Mazerolle CJ, Wallace VA: Retinal ganglion cell-derived sonic hedgehog locally controls proliferation and the timing of RGC development in the embryonic mouse retina. Development 2005, 132(22):5103-13.
  • [99]Takatsuka K, Hatakeyama J, Bessho Y, Kageyama R: Roles of the bHLH gene Hes1 in retinal morphogenesis. Brain Res 2004, 1004(1–2):148-55.
  • [100]Zheng MH, Shi M, Pei Z, Gao F, Han H, Ding YQ: The transcription factor RBP-J is essential for retinal cell differentiation and lamination. Mol Brain. 2009, 2:38.
  • [101]Hashimoto T, Zhang XM, Chen BY, Yang XJ: VEGF activates divergent intracellular signaling components to regulate retinal progenitor cell proliferation and neuronal differentiation. Development 2006, 133(11):2201-10.
  • [102]Boije H, MacDonald RB, Harris WA: Reconciling competence and transcriptional hierarchies with stochasticity in retinal lineages. Curr Opin Neurobiol. 2014, 27:68-74.
  • [103]Theiler K: The house mouse; development and normal stages from fertilization to 4 weeks of age. Springer, Berlin, New York; 1972.
  • [104]Linkert M, Rueden CT, Allan C, Burel JM, Moore W, Patterson A, et al.: Metadata matters: access to image data in the real world. J Cell Biol 2010, 189(5):777-82.
  • [105]Schneider CA, Rasband WS, Eliceiri KW: NIH Image to ImageJ: 25 years of image analysis. Nat Methods 2012, 9(7):671-5.
  • [106]Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al.: Fiji: an open-source platform for biological-image analysis. Nat Methods 2012, 9(7):676-82.
  文献评价指标  
  下载次数:12次 浏览次数:7次