期刊论文详细信息
Molecular Neurodegeneration
Increasing membrane cholesterol of neurons in culture recapitulates Alzheimer’s disease early phenotypes
Marie-Claude Potier5  Charles Duyckaerts5  Jean-Noël Octave2  Nathalie Cartier4  Gopal Thinakaran3  Frédéric Saudou6  Caroline Benstaali6  Fabian Corlier5  Mickael Le5  Koen Bossers1  Nathalie Pierrot2  Camille Lemercier-Neuillet5  Linda Hanbouch5  Luce Dauphinot5  Jeanne Laine5  Catherine Marquer5 
[1] Neuroregeneration Group, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam 1105 BA, The Netherlands;Université catholique de Louvain, Institute of Neuroscience, Brussels 1200, Belgium;Departments of Neurobiology, Neurology, and Pathology, The University of Chicago, Chicago, IL 60637, USA;INSERM U986 94276 Le Kremlin-Bicêtre, and University Paris-Sud, 91400 Orsay, France;Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, UM 75, U 1127, UMR 7225, ICM, 75013 Paris, France;Institut Curie, CNRS UMR, Orsay 91405, France
关键词: Axonal transport;    Neurons;    Endosomes;    Cholesterol;    Amyloid precursor protein;    Alzheimer’s disease;   
Others  :  1138550
DOI  :  10.1186/1750-1326-9-60
 received in 2014-03-11, accepted in 2014-12-03,  发布年份 2014
PDF
【 摘 要 】

Background

It is suspected that excess of brain cholesterol plays a role in Alzheimer’s disease (AD). Membrane-associated cholesterol was shown to be increased in the brain of individuals with sporadic AD and to correlate with the severity of the disease. We hypothesized that an increase of membrane cholesterol could trigger sporadic AD early phenotypes.

Results

We thus acutely loaded the plasma membrane of cultured neurons with cholesterol to reach the 30% increase observed in AD brains. We found changes in gene expression profiles that are reminiscent of early AD stages. We also observed early AD cellular phenotypes. Indeed we found enlarged and aggregated early endosomes using confocal and electron microscopy after immunocytochemistry. In addition amyloid precursor protein vesicular transport was inhibited in neuronal processes, as seen by live-imaging. Finally transient membrane cholesterol loading lead to significantly increased amyloid-β42 secretion.

Conclusions

Membrane cholesterol increase in cultured neurons reproduces most early AD changes and could thus be a relevant model for deciphering AD mechanisms and identifying new therapeutic targets.

【 授权许可】

   
2014 Marquer et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150320052156480.pdf 2346KB PDF download
Figure 5. 47KB Image download
Figure 4. 78KB Image download
Figure 3. 72KB Image download
Figure 2. 74KB Image download
Figure 1. 47KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Duyckaerts C, Delatour B, Potier MC: Classification and basic pathology of Alzheimer disease. Acta Neuropathol 2009, 118(1):5-36.
  • [2]Haass C, Kaether C, Thinakaran G, Sisodia S: Trafficking and proteolytic processing of APP. Cold Spring Harb Perspect Med 2012, 2(5):a006270.
  • [3]Duyckaerts C, Potier MC, Delatour B: Alzheimer disease models and human neuropathology: similarities and differences. Acta Neuropathol 2008, 115(1):5-38.
  • [4]Di Paolo G, Kim TW: Linking Lipids to alzheimer’s disease: cholesterol and beyond. Nat Rev Neurosci 2011, 12:284-296.
  • [5]Cutler RG, Kelly J, Storie K, Pedersen WA, Tammara A, Hatanpaa K, Troncoso JC, Mattson MP: Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer's disease. Proc Natl Acad Sci U S A 2004, 101(7):2070-2075.
  • [6]Xiong H, Callaghan D, Jones A, Walker DG, Lue LF, Beach TG, Sue LI, Woulfe J, Xu H, Stanimirovic DB, Zhang W: Cholesterol retention in Alzheimer's brain is responsible for high beta- and gamma-secretase activities and Abeta production. Neurobiol Dis 2008, 29(3):422-437.
  • [7]Lazar AN, Bich C, Panchal M, Desbenoit N, Petit VW, Touboul D, Dauphinot L, Marquer C, Laprevote O, Brunelle A, Duyckaerts C: Time-of-flight secondary ion mass spectrometry (TOF-SIMS) imaging reveals cholesterol overload in the cerebral cortex of Alzheimer disease patients. Acta Neuropathol 2012.
  • [8]Strittmatter WJ, Weisgraber KH, Huang DY, Dong LM, Salvesen GS, Pericak-Vance M, Schmechel D, Saunders AM, Goldgaber D, Roses AD: Binding of human apolipoprotein E to synthetic amyloid beta peptide: isoform-specific effects and implications for late-onset Alzheimer disease. Proc Natl Acad Sci U S A 1993, 90(17):8098-8102.
  • [9]Bouillot C, Prochiantz A, Rougon G, Allinquant B: Axonal amyloid precursor protein expressed by neurons in vitro is present in a membrane fraction with caveolae-like properties. J Biol Chem 1996, 271(13):7640-7644.
  • [10]Cordy JM, Hussain I, Dingwall C, Hooper NM, Turner AJ: Exclusively targeting beta-secretase to lipid rafts by GPI-anchor addition up-regulates beta-site processing of the amyloid precursor protein. Proc Natl Acad Sci U S A 2003, 100(20):11735-11740.
  • [11]Simons M, Keller P, De Strooper B, Beyreuther K, Dotti CG, Simons K: Cholesterol depletion inhibits the generation of beta-amyloid in hippocampal neurons. Proc Natl Acad Sci U S A 1998, 95(11):6460-6464.
  • [12]Marquer C, Devauges V, Cossec JC, Liot G, Lecart S, Saudou F, Duyckaerts C, Leveque-Fort S, Potier MC: Local cholesterol increase triggers amyloid precursor protein-Bace1 clustering in lipid rafts and rapid endocytosis. FASEB J 2011, 25(4):1295-1305.
  • [13]Cossec JC, Simon A, Marquer C, Moldrich RX, Leterrier C, Rossier J, Duyckaerts C, Lenkei Z, Potier MC: Clathrin-dependent APP endocytosis and Abeta secretion are highly sensitive to the level of plasma membrane cholesterol. Biochim Biophys Acta 2010, 1801(8):846-852.
  • [14]Barrett PJ, Song Y, Van Horn WD, Hustedt EJ, Schafer JM, Hadziselimovic A, Beel AJ, Sanders CR: The amyloid precursor protein has a flexible transmembrane domain and binds cholesterol. Science 2012, 336(6085):1168-1171.
  • [15]Hoglund K, Blennow K: Effect of HMG-CoA reductase inhibitors on beta-amyloid peptide levels: implications for Alzheimer's disease. CNS Drugs 2007, 21(6):449-462.
  • [16]Pac-Soo C, Lloyd DG, Vizcaychipi MP, Ma D: Statins: the role in the treatment and prevention of Alzheimer's neurodegeneration. J Alzheimers Dis JAD 2011, 27(1):1-10.
  • [17]Cenedella RJ: Cholesterol synthesis inhibitor U18666A and the role of sterol metabolism and trafficking in numerous pathophysiological processes. Lipids 2009, 44(6):477-487.
  • [18]Hui L, Chen X, Geiger JD: Endolysosome involvement in LDL cholesterol-induced Alzheimer's disease-like pathology in primary cultured neurons. Life Sci 2012, 91(23–24):1159-1168.
  • [19]Lopez CA, de Vries AH, Marrink SJ: Molecular mechanism of cyclodextrin mediated cholesterol extraction. PLoS Comput Biol 2011, 7(3):e1002020.
  • [20]Bossers K, Wirz KT, Meerhoff GF, Essing AH, van Dongen JW, Houba P, Kruse CG, Verhaagen J, Swaab DF: Concerted changes in transcripts in the prefrontal cortex precede neuropathology in Alzheimer's disease. Brain 2010, 133(Pt 12):3699-3723.
  • [21]Cataldo AM, Peterhoff CM, Troncoso JC, Gomez-Isla T, Hyman BT, Nixon RA: Endocytic pathway abnormalities precede amyloid beta deposition in sporadic Alzheimer's disease and Down syndrome: differential effects of APOE genotype and presenilin mutations. Am J Pathol 2000, 157(1):277-286.
  • [22]Cataldo AM, Petanceska S, Terio NB, Peterhoff CM, Durham R, Mercken M, Mehta PD, Buxbaum J, Haroutunian V, Nixon RA: Abeta localization in abnormal endosomes: association with earliest Abeta elevations in AD and Down syndrome. Neurobiol Aging 2004, 25(10):1263-1272.
  • [23]Dai J, Buijs RM, Kamphorst W, Swaab DF: Impaired axonal transport of cortical neurons in Alzheimer's disease is associated with neuropathological changes. Brain Res 2002, 948(1–2):138-144.
  • [24]Smith KD, Kallhoff V, Zheng H, Pautler RG: In vivo axonal transport rates decrease in a mouse model of Alzheimer's disease. NeuroImage 2007, 35(4):1401-1408.
  • [25]Wang N, Silver DL, Thiele C, Tall AR: ATP-binding cassette transporter A1 (ABCA1) functions as a cholesterol efflux regulatory protein. J Biol Chem 2001, 276(26):23742-23747.
  • [26]Braak H, Braak E: Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 1991, 82(4):239-259.
  • [27]Di Paolo G, De Camilli P: Phosphoinositides in cell regulation and membrane dynamics. Nature 2006, 443(7112):651-657.
  • [28]Chang-Ileto B, Frere SG, Chan RB, Voronov SV, Roux A, Di Paolo G: Synaptojanin 1-mediated PI(4,5)P2 hydrolysis is modulated by membrane curvature and facilitates membrane fission. Dev Cell 2011, 20(2):206-218.
  • [29]Chun YS, Shin S, Kim Y, Cho H, Park MK, Kim TW, Voronov SV, Di Paolo G, Suh BC, Chung S: Cholesterol modulates ion channels via down-regulation of phosphatidylinositol 4,5-bisphosphate. J Neurochem 2010, 112(5):1286-1294.
  • [30]Cossec JC, Lavaur J, Berman DE, Rivals I, Hoischen A, Stora S, Ripoll C, Mircher C, Grattau Y, Olivomarin JC, de Chaumont F, Lecourtois M, Antonarakis SE, Veltman JA, Delabar JM, Duyckaerts C, Di Paolo G, Potier MC: Trisomy for synaptojanin1 in Down syndrome is functionally linked to the enlargement of early endosomes. Hum Mol Genet 2012, 21(14):3156-3172.
  • [31]Wilson JM, de Hoop M, Zorzi N, Toh BH, Dotti CG, Parton RG: EEA1, a tethering protein of the early sorting endosome, shows a polarized distribution in hippocampal neurons, epithelial cells, and fibroblasts. Mol Biol Cell 2000, 11(8):2657-2671.
  • [32]Stokin GB, Lillo C, Falzone TL, Brusch RG, Rockenstein E, Mount SL, Raman R, Davies P, Masliah E, Williams DS, Goldstein LS: Axonopathy and transport deficits early in the pathogenesis of Alzheimer's disease. Science 2005, 307(5713):1282-1288.
  • [33]Kaether C, Skehel P, Dotti CG: Axonal membrane proteins are transported in distinct carriers: a two-color video microscopy study in cultured hippocampal neurons. Mol Biol Cell 2000, 11(4):1213-1224.
  • [34]Goldsbury C, Mocanu MM, Thies E, Kaether C, Haass C, Keller P, Biernat J, Mandelkow E, Mandelkow EM: Inhibition of APP trafficking by tau protein does not increase the generation of amyloid-beta peptides. Traffic 2006, 7(7):873-888.
  • [35]Rodrigues EM, Weissmiller AM, Goldstein LS: Enhanced beta-secretase processing alters APP axonal transport and leads to axonal defects. Hum Mol Genet 2012, 21(21):4587-4601.
  • [36]Roux JC, Zala D, Panayotis N, Borges-Correia A, Saudou F, Villard L: Modification of Mecp2 dosage alters axonal transport through the Huntingtin/Hap1 pathway. Neurobiol Dis 2012, 45(2):786-795.
  • [37]Araki Y, Kawano T, Taru H, Saito Y, Wada S, Miyamoto K, Kobayashi H, Ishikawa HO, Ohsugi Y, Yamamoto T, Matsuno K, Kinjo M, Suzuki T: The novel cargo Alcadein induces vesicle association of kinesin-1 motor components and activates axonal transport. EMBO J 2007, 26(6):1475-1486.
  • [38]Colin E, Zala D, Liot G, Rangone H, Borrell-Pages M, Li XJ, Saudou F, Humbert S: Huntingtin phosphorylation acts as a molecular switch for anterograde/retrograde transport in neurons. EMBO J 2008, 27(15):2124-2134.
  • [39]Chen H, Yang J, Low PS, Cheng JX: Cholesterol level regulates endosome motility via Rab proteins. Biophys J 2008, 94(4):1508-1520.
  • [40]Rocha N, Kuijl C, van der Kant R, Janssen L, Houben D, Janssen H, Zwart W, Neefjes J: Cholesterol sensor ORP1L contacts the ER protein VAP to control Rab7-RILP-p150 Glued and late endosome positioning. J Cell Biol 2009, 185(7):1209-1225.
  • [41]Lebrand C, Corti M, Goodson H, Cosson P, Cavalli V, Mayran N, Faure J, Gruenberg J: Late endosome motility depends on lipids via the small GTPase Rab7. EMBO J 2002, 21(6):1289-1300.
  • [42]Kimura N, Okabayashi S, Ono F: Dynein dysfunction disrupts intracellular vesicle trafficking bidirectionally and perturbs synaptic vesicle docking via endocytic disturbances a potential mechanism underlying age-dependent impairment of cognitive function. Am J Pathol 2012, 180(2):550-561.
  • [43]Szodorai A, Kuan YH, Hunzelmann S, Engel U, Sakane A, Sasaki T, Takai Y, Kirsch J, Muller U, Beyreuther K, Brady S, Morfini G, Kins S: APP anterograde transport requires Rab3A GTPase activity for assembly of the transport vesicle. J Neurosci 2009, 29(46):14534-14544.
  • [44]Klein WL, Stine WB Jr, Teplow DB: Small assemblies of unmodified amyloid beta-protein are the proximate neurotoxin in Alzheimer's disease. Neurobiol Aging 2004, 25(5):569-580.
  • [45]Okochi M, Tagami S, Yanagida K, Takami M, Kodama TS, Mori K, Nakayama T, Ihara Y, Takeda M: Gamma-secretase modulators and presenilin 1 mutants act differently on presenilin/gamma-secretase function to cleave abeta42 and abeta43. Cell Rep 2013, 3(1):42-51.
  • [46]Kukar TL, Ladd TB, Robertson P, Pintchovski SA, Moore B, Bann MA, Ren Z, Jansen-West K, Malphrus K, Eggert S, Maruyama H, Cottrell BA, Das P, Basi GS, Koo EH, Golde TE: Lysine 624 of the amyloid precursor protein (APP) is a critical determinant of amyloid beta peptide length: support for a sequential model of gamma-secretase intramembrane proteolysis and regulation by the amyloid beta precursor protein (APP) juxtamembrane region. J Biol Chem 2011, 286(46):39804-39812.
  • [47]Saher G, Simons M: Cholesterol and myelin biogenesis. Sub Cell Biochem 2010, 51:489-508.
  • [48]Jurevics H, Largent C, Hostettler J, Sammond DW, Matsushima GK, Kleindienst A, Toews AD, Morell P: Alterations in metabolism and gene expression in brain regions during cuprizone-induced demyelination and remyelination. J Neurochem 2002, 82(1):126-136.
  • [49]Hudry E, Van Dam D, Kulik W, De Deyn PP, Stet FS, Ahouansou O, Benraiss A, Delacourte A, Bougneres P, Aubourg P, Cartier N: Adeno-associated virus gene therapy with cholesterol 24-hydroxylase reduces the amyloid pathology before or after the onset of amyloid plaques in mouse models of Alzheimer's disease. Mol Ther 2010, 18(1):44-53.
  • [50]Ittner LM, Gotz J: Amyloid-beta and tau–a toxic pas de deux in Alzheimer's disease. Nat Rev Neurosci 2011, 12(2):65-72.
  • [51]Ittner LM, Ke YD, Delerue F, Bi M, Gladbach A, van Eersel J, Wolfing H, Chieng BC, Christie MJ, Napier IA, Eckert A, Staufenbiel M, Hardeman E, Götz J: Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer's disease mouse models. Cell 2010, 142(3):387-397.
  • [52]Yao J, Ho D, Calingasan NY, Pipalia NH, Lin MT, Beal MF: Neuroprotection by cyclodextrin in cell and mouse models of Alzheimer disease. J Exp Med 2012, 209(13):2501-2513.
  • [53]Barbero-Camps E, Fernandez A, Martinez L, Fernandez-Checa JC, Colell A: APP/PS1 mice overexpressing SREBP-2 exhibit combined Abeta accumulation and tau pathology underlying Alzheimer's disease. Hum Mol Genet 2013, 22(17):3460-3476.
  • [54]de Chaumont F, Dallongeville S, Chenouard N, Herve N, Pop S, Provoost T, Meas-Yedid V, Pankajakshan P, Lecomte T, Le Montagner Y, Lagache T, Dufour A, Olivo-Marin JC: Icy: an open bioimage informatics platform for extended reproducible research. Nat Methods 2012, 9(7):690-696.
  • [55]Eden E, Lipson D, Yogev S, Yakhini Z: Discovering motifs in ranked lists of DNA sequences. PLoS Comput Biol 2007, 3(3):e39.
  • [56]Eden E, Navon R, Steinfeld I, Lipson D, Yakhini Z: GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinforma 2009, 10:48. BioMed Central Full Text
  文献评价指标  
  下载次数:16次 浏览次数:8次