Nutrition & Metabolism | |
A C. elegans model to study human metabolic regulation | |
Randy Gaugler2  Futwan Al-Mohanna1  Walter Conca1  Kate S Collison1  Ranjit S Parhar1  Yi Wang2  Sarwar Hashmi2  | |
[1] Department of Cell Biology-Cardiovascular unit, KFSH&RC, Riyadh, Saudi Arabia;Laboratory of Developmental Biology, Center for Vector Biology, Rutgers University, 180 Jones Avenue, New Brunswick, NJ, 08901, USA | |
关键词: Triglycerides; Transcription factor; Obesity; Metabolic syndrome; Lipid metabolism; KLF; Krüppel-like factors; Leptin; Insulin; Fat storage; Fatty acids; Diabetes; Ce-KLF-3; Ce-KLF-1; C. elegans; β-oxidation; | |
Others : 804609 DOI : 10.1186/1743-7075-10-31 |
|
received in 2013-01-14, accepted in 2013-03-19, 发布年份 2013 | |
【 摘 要 】
Lipid metabolic disorder is a critical risk factor for metabolic syndrome, triggering debilitating diseases like obesity and diabetes. Both obesity and diabetes are the epicenter of important medical issues, representing a major international public health threat. Accumulation of fat in adipose tissue, muscles and liver and/or the defects in their ability to metabolize fatty acids, results in insulin resistance. This triggers an early pathogenesis of type 2 diabetes (T2D). In mammals, lipid metabolism involves several organs, including the brain, adipose tissue, muscles, liver, and gut. These organs are part of complex homeostatic system and communicate through hormones, neurons and metabolites. Our study dissects the importance of mammalian Krüppel-like factors in over all energy homeostasis. Factors controlling energy metabolism are conserved between mammals and Caenorhabditis elegans providing a new and powerful strategy to delineate the molecular pathways that lead to metabolic disorder. The C. elegans intestine is our model system where genetics, molecular biology, and cell biology are used to identify and understand genes required in fat metabolism. Thus far, we have found an important role of C. elegans KLF in FA biosynthesis, mitochondrial proliferation, lipid secretion, and β-oxidation. The mechanism by which KLF controls these events in lipid metabolism is unknown. We have recently observed that C. elegans KLF-3 selectively acts on insulin components to regulate insulin pathway activity. There are many factors that control energy homeostasis and defects in this control system are implicated in the pathogenesis of human obesity and diabetes. In this review we are discussing a role of KLF in human metabolic regulation.
【 授权许可】
2013 Hashmi et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20140708063551854.pdf | 622KB | download | |
Figure 3. | 29KB | Image | download |
Figure 2. | 46KB | Image | download |
Figure 1. | 34KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
【 参考文献 】
- [1]Schwartz MW, Woods SC, Porte DR Jr, Seeley RJ, Baskin DG: Central nervous system control of food intake. Nature 2000, 404:661-671.
- [2]Niswender KD, Schwartz MW: Insulin and leptin revisited: adiposity signals with overlapping physiological and intracellular signaling capabilities. Front Neuroendocrinol 2003, 24:1-10.
- [3]Friedman JM, Halaas JL: Leptin and the regulation of body weight in mammals. Nature 1998, 395:763-770.
- [4]Rondinone CM: Adipocyte-derived hormones, cytokines, and mediators. Endocrine 2006, 29:81-90.
- [5]Trayhurn P, Bing C: Appetite and energy balance signals from adipocytes. Philos Trans R Soc Lond Biol Sci 2006, 361:1237-1249.
- [6]Rasouli N, Kern PA: Adipocytokines and the metabolic complications of obesity. J Clin Endocrinol Metab 2008, 93(11 Suppl 1):S64-S73.
- [7]Farooqi IS, O’Rahilly S: Leptin: a pivotal regulator of human energy homeostasis. Am J Clin Nutr 2009, 89:980S-984S.
- [8]Rosen ED, Spiegelman BM: Adipocytes as regulators of energy balance and glucose homeostasis. Nature 2006, 444:847-853.
- [9]Catalan V, Gomez-Ambrosi J, Rodriguez A, Salvador J, Fruhbeck G: Adipokines in the treatment of diabetes mellitus and obesity. Expert Opin Pharmacother 2009, 10:239-254.
- [10]Das M, Gabriely I, Barzilai N: Caloric restriction, body fat and ageing in experimental models. Obes Rev 2004, 5:13-19.
- [11]Weyer C, Wolford JK, Hanson RL, Foley JE, Tataranni PA, Bogardus C, Pratley RE: Subcutaneous abdominal adipocyte size, a predictor of type 2 diabetes, is linked to chromosome 1q21-q23 and is associated with a common polymorphism in LMNA in pima Indians. Mol Genet Metab 2001, 72:231-238.
- [12]Abel ED, Peroni O, Kim JK, Kim YB, Boss O, Hadro E, Minnemann T, Shulman GI, Kahn BB: Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver. Nature 2001, 409:729-733.
- [13]Oishi Y, Manabe I, Tobe K, Tsushima K, Shindo T, Fujiu K, Nishimura G, Maemura K, Yamauchi T, Kubota N, Suzuki R, Kitamura T, Akira S, Kadowaki T, Nagai R: Krüppel-like transcription factor KLF5 is a key regulator of adipocyte differentiation. Cell Metab 2005, 1:27-39.
- [14]Wu J, Srinivasan V, Neumann C, Lingrel JB: The KLF2 transcription factor does not affect the formation of preadipocytes but inhibits their differentiation into adipocytes. Biochemistry 2005, 44:11098-11105.
- [15]Li D, S Yea S, Li S, Chen Z, Narla G, Banck M, Laborda J, Tan S, Friedman JM, Friedman SL, Walsh MJ: Krüppel-like factor-6 promotes preadipocyte differentiation through histone deacetylase 3-dependent repression of DLK1. J Biol Chem 2005, 280:26941-26952.
- [16]Birsoy K, Chen Z, Friedman JM: Transcriptional regulation of adipogenesis by KLF4. Cell Metab 2008, 7:339-347.
- [17]Sue N, Jack BHA, Eaton SA, Pearson RCM, Funnell APW, Turner J, Czolij R, Denyer G, Bao S, Molero-Navajas JC, Perkins AC, Fujiwara Y, Orkin SH, Bell-Anderson K, Crossly M: Targeted disruption of the basic krüppel-like factor gene (klf3) reveals a role in adipogenes. Mol Cell Biol 2008, 28:3967-3978.
- [18]Bieker JJ: Krüppel-like factors: three fingers in many pies. J Biol Chem 2001, 276:34355-34358.
- [19]Kaczynski J, Cook T, Urrutia R: Sp1- And krüppel-like transcription factors. Genome Biol 2003, 4:206-214. BioMed Central Full Text
- [20]van Vliet J, Crofts A, Quinlan G, Czolij R, Perkins C, Crossley M: Human KLF17 is a new member of the Sp/KLF family of transcription factors. Genomics 2006, 87:474-482.
- [21]Lee HJ, Kang YM, Moon CS, Joe MK, Lim JH, Suh YH, Song J, Jung MH: KLF4 Positively regulates human ghrelin expression. Biochem J 2009, 420:403-411.
- [22]Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K: Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 1999, 402:656-660.
- [23]Nakazato M, Murakami M, Date N, Kojima Y, Matsuo H, Kangawa K, Matsukura S: A role for ghrelin in the central regulation of feeding. Nature 2001, 409:194-198.
- [24]Mori T, Sakaue H, Iguchi H, Gomi H, Okada Y, Takashima Y, Nakamura K, Nakamura T, Yamauchi T, Kubota N, Kadowaki T, Matsuki Y, Ogawa W, Hiramatsu RM, Kasuga M: Role of krüppel-like transcription factor 15 (KLF15) in transcriptional regulation of adipogenesis. J Biol Chem 2005, 280:12867-12875.
- [25]Gray S, Feinber MW, Hull S, Kuo CT, Watanabe M, Banerjee SS, DePina A, Haspel R, Jain MK: The krüppel-like factor KLF15 regulates the insulin-sensitive glucose transporter GLUT4. J Biol Chem 2002, 277:34322-34328.
- [26]Gray S, Wang B, Orihuela Y, Hong EG, Fisch S, Haldar S, Cline GW, Kim JK, Peroni OD, Kahn BB, Jain MK: Regulation of gluconeogenesis by krüppel-like factor 15. Cell Metab 2007, 5:305-312.
- [27]Small KS, Hedman AK, Grundberg E, Nica AC, Thorleifsson G, Kong A, Thorsteindottir U, Shin SY, Richards HB, Soranzo N, Ahmadi KR, Lindgren CM, Stefansson K, Dermitzakis ET, Deloukas P, Spector TD, McCarthy MI, The MuTHER Consortium: Identification of an imprinted master trans regulator at the KLF14 locus related to multiple metabolic phenotypes. Nat Genet 2011, 43:561-564.
- [28]Kawamura Y, Tanaka Y, Kawamori R, Maeda S: Over-expression of krüppel-like factor 7 (KLF7) regulates adipocytokine gene expressions in human adipocytes, and inhibits glucose-induced insulin secretion in pancreatic beta cell line. Mol Endocrinol 2006, 20:844-856.
- [29]Cho SY, Park PJ, Shin HJ, Kim YK, Shin DW, Shin ES, Lee HH, Lee BG, Baik JH, Lee TR: Catechin suppresses expression of Krü ppel-like factor 7 and increases expression and secretion of adiponectin protein in 3 T3-L1 cells. Am J Physiol-Endo Meta 2007, 292:E1166-E1172.
- [30]Blundell JE: Pharmacological approaches to appetite suppression. Trends Pharmacol Sci 1991, 12:147-157.
- [31]Woods SC, Strubbe JH: The psychobiology of meals. Psychonomic Bull Rev 1994, 1:141-155.
- [32]Blundell JE, Lawton CL, Hill AJ: Mechanisms of appetite control and their abnormalities in obese patients. Horm Res Suppl 1993, 3:72-76.
- [33]Kennedy GC: The role of depot fat in the hypothalamic control of food intake in the rat. Proc R Soc Lon 1953, B140:579-592.
- [34]Gibbs J, Young RC, Smith GP: Cholecystokinin decreases food intake in rats. J Comp Physiol Psychol 1973, 84:488-495.
- [35]Antin J, Gibbs J, Holt J, Young RC, Smith GP: Cholecystokinin elicits the complete behavioral sequence of satiety in rats. J Comp Physiol Psycho 1975, l89:784-790.
- [36]Halford JC, Wanninayake SC, Blundell JE: Behavioral satiety sequence (BSS) for the diagnosis of drug action on food intake. Pharmacol Biochem Behav 1998, 61:59-168.
- [37]Blundell JE, Naslund E: Glucagon-like peptide-1, satiety and appetite control. Br J Nutr 1999, 81:259-260.
- [38]Erlanson-Albertsson C: Appetite regulation and energy balance. Acta Paediatr Suppl 2005, 94:40-41.
- [39]Baskin DG, Wilcox BJ, Figlewicz DP, Dorsa DM: Insulin and insulin-like growth factors in the CNS. Trends Neurosci 1988, 11:107-111.
- [40]Baskin D, Breininger J, Schwartz M: Leptin receptor mRNA identifies a subpopulation of neuropeptide Y neurons activated by fasting in rat hypothalamus. Diabetes 1999, 48:828-833.
- [41]Cheung C, D Clifton D, Steiner R: Proopimelanocortin neurons are direct targets for leptin in the hypothalamus. Endocrinology 1997, 138:4489-4492.
- [42]Xu AW, Kaelin CB, Takeda K, Akira S, MW Schwartz MW, Barsh GS: P13K Integrates the action of insulin and leptin on hypothalamic neurons. J Clin Invest 2005, 115:951-958.
- [43]Friedman JM: Leptin at 14 y of age: an ongoing story. Am J Clin Nutr 2009, 89:973S-979S.
- [44]Blüher S, Mantzoros CS: Leptin in humans: lessons from translational research. Am J Clin Nutr 2009, 89:991S-997S.
- [45]Mantzoros CS, Magkos F, Brinkoetter M, Sienkiewicz E, Dardeno T, Kim SY, Hamnvik OPR, Koniaris A: Leptin in human physiology and pathophysiology. Am J Physio-Endo 2011, 301:E567-E584.
- [46]Marroqui L, Gonzalez A, Patricia Ñeco P, Caballero-Garrido E, Vieira E, Ripoll C, Nadall A, Quesada I: Role of leptin in the pancreatic β-cell: effects and signaling pathways. J Mol Endocrinol 2012, 49:R9-R17.
- [47]Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM: Positional cloning of the mouse obese gene and its human homologue. Nature 1994, 372:425-432.
- [48]Porte D Jr, Baskin DG, Schwartz MW: Leptin and insulin action in the central nervous system. Nutr Rev 2002, 60:S20-S29.
- [49]Klok MD, Jakobsdottir S, Drent ML: The role of leptin and ghrelin in the regulation of food intake and body weight in humans: a review. Obes Rev 2007, 8:21-34.
- [50]Chen H, Charlat O, Tartaglia LA, Woolf EA, Weng X, Ellis SJ, Lakey ND, Culpepper J, Moore KJ, Breitbart RE, Duyk GM, Tepper RI, Morgenstern JP: Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice. Cell 1996, 84:491-495.
- [51]Elmquist JK, Bjorbaek C, Ahima RS, Flier JS, Saper CB: Distributions of leptin receptor mRNA isoforms in the rat brain. J Comp Neurol 1998, 395:535-547.
- [52]Maffei M, Halaas J, Ravussin E, Pratley RE, Lee GH, Zhang Y, Fei H, Kim S, Lallone R, Ranganathan S: Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nat Med 1995, 11:1155-1161.
- [53]Considine RV, Sinha MK, Heiman ML, Kriauciunas A, Stephens TW, Nyce MR, Ohannesian JP, Marco CC, McKee LJ, Bauer TL: Serum immunoreactive-leptin concentrations in normal-weight and obese humans. New Engl J Med 1996, 334:292-295.
- [54]Montague CT: Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature 1997, 387:903-908.
- [55]Ahima RS, Prabakaran D, Mantzoros C, Qu D, Lowell B, Maratos-Flier E, Flier JS: Role of leptin in the neuroendocrine response to fasting. Nature 1996, 382:250-252.
- [56]Hashmi S, Ji Q, Zhang J, Parhar RS, Huang CH, Brey C, Gaugler R: A krüppel-like factor in Caenorhabditis elegans with essential roles in fat regulation, cell death and phagocytosis. DNA and Cell Biol 2008, 27:545-551.
- [57]Brey C, Nelder M, Gaugler R, Hashmi S: Krüppel-like family of transcription factors an emerging new frontier in lipid biology. Int J Biol Sci 2009, 5:622-636.
- [58]Zhang J, Yang C, Brey C, Rodriguez M, Oksov Y, Gaugler R, Hashmi S: Mutation in caenorhabditis elegans krüppel-like factor, KLF-3 results in fat accumulation and alters fatty acid composition composition. Exp Cell Res 2009, 315:2568-2580.
- [59]Zhang J, Bakheet R, Parhar RS, Huang CH, Hussain MM, Pan X, Siddiqui SS, Hashmi S: Regulation of fat storage and reproduction by krüppel-like transcription factor KLF-3 and fat associated genes in Caenorhabditis elegans. J Mol Biol 2011, 411:537-553.
- [60]Hashmi S, Zhang J, Siddiqui SS, Parhar RS, Bakheet R, Al-Mohanna F: Partner in fat metabolism: role of KLFs in fat burning and reproductive behavior. 3. Biotech 2011, 1:59-72.
- [61]Sze JY, Victor M, Loer C, Shi Y, Ruvkun G: Food and metabolic signaling defects in a Caenorhabditis elegans serotonin-synthesis mutant. Nature 2000, 403:560-564.
- [62]Horvitz HR, Chalfie M, Trent C, Sulston JE, Evans PD: Serotonin and octopamine in the nematode Caenorhabditis elegans. Science 1982, 216:1012-1014.
- [63]Clifton PG, Kennett GA: Monoamine receptors in the regulation of feeding behavior and energy balance. CNS Neurol Disord Drug Targets 2006, 5:293-312.
- [64]Cassada RC, Russell RL: The dauer larva, a post-embryonic developmental variant of the nematode Caenorhabditis elegans. Dev Biol 1975, 46:326-342.
- [65]You YJ, Kim J, Raizen DM, Avery L: Insulin, cGMP, and TGF-β signals regulate food intake and quiescence in C. elegans: a model for satiety. Cell metabolism 2008, 7:249-257.
- [66]Sulston JE, Schierenberg E, White JG, Thomson JN: The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol 1983, 100:64-119.
- [67]Raizen DM, Zimmerman JE, Maycock MH, Ta UD, You YJ, Sundaram MV, Pack AI: Lethargus is a caenorhabditis elegans sleep-like state. Nature 2008, 451:569-573.
- [68]White J: The anatomy. In The nematode Caenorhabditis elegans. Volume 1. Edited by Wood WB. New York: Cold Spring Harbor Laboratory; 1998:81-122.
- [69]Simoni RD, Hill RL, Vaughan M: The discovery of insulin: the work of Fredrick banting and Charles best. J Biol Chem 2002, 277:e15.
- [70]Rorsman P: Insulin secretion: function and therapy of pancreatic beta-cells in diabetes. Br J Diab Vas Dis 2005, 5:187-191.
- [71]Woods S, Lotter E, Mckay L, Porte DJ: Chronic intracerebroventricular infusion of insulin reduces food intake and body weight of baboons. Nature 1979, 282:503-505.
- [72]Badman MK, Flier JS: The gut and energy balance: visceral allies in the obesity wars. Science 2005, 307:1909-1914.
- [73]Bruning JC, Gautam D, Burks DJ, Gillette J, Schubert M, Orban PC, Klein R, Krone W, Muller-Wieland D, Kahn CR: Role of brain insulin receptor in control of body weight and reproduction. Science 2000, 289:2122-2126.
- [74]Biddinger SB, Kahn CR: From mice to men: insights into the insulin Resistance syndromes. Annu Rev Physiol 2006, 68:123-158.
- [75]Polonsky KS, Given BD, VanCauter E: Twenty-four hour profiles and pulsatile patterns of insulin secretion in normal and obese subjects. J Clin Invest 1988, 81:442-448.
- [76]Seino S, Shibasaki T, Kohtaro Minami K: Dynamics of insulin secretion and the clinical implication implication for obesity and diabetes. J Clin Invest 2011, 121:2118-2125.
- [77]Mueller WM, Gregoire FM, Stanhope KL, Mobbs CV, Mizuno TM, Warden CH, Stern JS, Havel PJ: Evidence that glucose metabolism regulates leptin secretion from cultured rat adipocytes. Endocrinology 1998, 139:551-558.
- [78]Luedtke S, O'Connor V, Holden-Dye L, Walker RJ: The regulation of feeding and metabolism in response to food deprivation in Caenorhabditis elegans. Invert Neurosci 2010, 10:63-76.
- [79]Gregoire FM, Chomiki N, Kachinskas D, Warden CH: Cloning and developmental regulation of a novel member of the insulin-like gene family in Caenorhabditis elegans. Biochem Biophys Res Commun 1998, 249:385-390.
- [80]Pierce SB, Costa M, Wisotzkey R, Devadhar S, Homburger H, Buchman AR, Ferguson KC, Heller J, Platt DM, Pasquinelli AA, Leo XL, Doberstein SK, Ruvkun G: Regulation of DAF-2 receptor signaling by human insulin and ins-1, a member of the unusually large and diverse C. elegans insulin gene family. Genes Dev 2001, 15:672-686.
- [81]Kawano T, Ito Y, Ishiguru M, Takuwa K, Nakajima T, Kimura Y: Molecular cloning and characterization of a new insulin/IGF-like peptide of the nematode Caenorhabditis elegans. Biochem Biophys Res Commun 2000, 273:431-436.
- [82]Kimura KD, Tissenbaum HA, Yanxia L, Ruvkun G: Daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 1997, 277:942-946.
- [83]Mukhopadhyay A, Deplancke B, Walhout AJM, Tissenbaum AH: C. elegans tubby regulates life span and fat storage by two independent mechanisms. Cell Metab 2005, 2:35-42.
- [84]Ogg S, Paradis S, Gottlieb S, Patterson G, Lee L, Tissenbaum H, Ruvkun G: The fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature 1997, 389:994-999.
- [85]Georgi LK, Albert PS, Riddle DL: daf-1, a C. elegans gene controlling dauer larva development, encodes a novel receptor protein kinase. Cell 1990, 61:635-645.
- [86]Estevez M, Attisano L, Wrana JL, Albert PS, Massague J, Riddle DL: The daf-4 gene encodes a bone morphogenetic protein receptor controlling C. elegans dauer larva development. Nature 1993, 365:644-649.