期刊论文详细信息
Virology Journal
Active vaccination with vaccinia virus A33 protects mice against lethal vaccinia and ectromelia viruses but not against cowpoxvirus; elucidation of the specific adaptive immune response
Udy Olshevsky2  Reuven Levin2  Dana Stein1  Ofir Israeli1  Batel Lachmi2  Paula Schneider2  David Ben-Nathan2  Boaz Politi2  Sharon Melamed2  Tomer Israely2  Noam Erez2  Anat Zvi1  Shlomo Lustig2  Nir Paran2 
[1] Department of Biochemistry and Molecular Biology, Israel Institute for Biological Research, P.O. box 19, Ness-Ziona 74100, Israel;Department of Infectious Diseases, Israel Institute for Biological Research, P.O. box 19, Ness-Ziona 74100, Israel
关键词: In-vivo protection;    Sindbis;    Alphavirus;    1G10;    Monkeypox;    Vaccinia;    Cowpox;    A33;    Subunit vaccine;    Smallpox;   
Others  :  829221
DOI  :  10.1186/1743-422X-10-229
 received in 2013-05-16, accepted in 2013-07-05,  发布年份 2013
PDF
【 摘 要 】

Vaccinia virus protein A33 (A33VACV) plays an important role in protection against orthopoxviruses, and hence is included in experimental multi-subunit smallpox vaccines. In this study we show that single-dose vaccination with recombinant Sindbis virus expressing A33VACV, is sufficient to protect mice against lethal challenge with vaccinia virus WR (VACV-WR) and ectromelia virus (ECTV) but not against cowpox virus (CPXV), a closely related orthopoxvirus. Moreover, a subunit vaccine based on the cowpox virus A33 ortholog (A33CPXV) failed to protect against cowpox and only partially protected mice against VACV-WR challenge. We mapped regions of sequence variation between A33VACV and A33CPXVand analyzed the role of such variations in protection. We identified a single protective region located between residues 104–120 that harbors a putative H-2Kd T cell epitope as well as a B cell epitope - a target for the neutralizing antibody MAb-1G10 that blocks spreading of extracellular virions. Both epitopes in A33CPXV are mutated and predicted to be non-functional. Whereas vaccination with A33VACV did not induce in-vivo CTL activity to the predicted epitope, inhibition of virus spread in-vitro, and protection from lethal VACV challenge pointed to the B cell epitope highlighting the critical role of residue L118 and of adjacent compensatory residues in protection. This epitope’s critical role in protection, as well as its modifications within the orthopoxvirus genus should be taken in context with the failure of A33 to protect against CPXV as demonstrated here. These findings should be considered when developing new subunit vaccines and monoclonal antibody based therapeutics against orthopoxviruses, especially variola virus, the etiologic agent of smallpox.

【 授权许可】

   
2013 Paran et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140714060742231.pdf 1706KB PDF download
Figure 7. 54KB Image download
Figure 6. 109KB Image download
Figure 5. 74KB Image download
Figure 4. 93KB Image download
Figure 3. 133KB Image download
Figure 2. 138KB Image download
Figure 1. 53KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Fenner F, Henderson DA, Artia I, Jezek Z, Ladnyi ID: Smallpox and its Eradication. Geneva: World Health Organization; 1998.
  • [2]Damon IK: Poxviruses, vol. 2. Philadelphia: Wolterskluwer, Lippincott, Williams & Wilkins; 2007.
  • [3]Fang M, Cheng H, Dai Z, Bu Z, Sigal LJ: Immunization with a single extracellular enveloped virus protein produced in bacteria provides partial protection from a lethal orthopoxvirus infection in a natural host. Virology 2006, 345(1):231-243.
  • [4]Fogg C, Lustig S, Whitbeck JC, Eisenberg RJ, Cohen GH, Moss B: Protective immunity to vaccinia virus induced by vaccination with multiple recombinant outer membrane proteins of intracellular and extracellular virions. J Virol 2004, 78(19):10230-10237.
  • [5]Heraud JM, Edghill-Smith Y, Ayala V, Kalisz I, Parrino J, Kalyanaraman VS, Manischewitz J, King LR, Hryniewicz A, Trindade CJ, et al.: Subunit recombinant vaccine protects against monkeypox. J Immunol 2006, 177(4):2552-2564.
  • [6]Hooper JW, Custer DM, Schmaljohn CS, Schmaljohn AL: DNA vaccination with vaccinia virus L1R and A33R genes protects mice against a lethal poxvirus challenge. Virology 2000, 266(2):329-339.
  • [7]Hooper JW, Custer DM, Thompson E: Four-gene-combination DNA vaccine protects mice against a lethal vaccinia virus challenge and elicits appropriate antibody responses in nonhuman primates. Virology 2003, 306(1):181-195.
  • [8]Hooper JW, Ferro AM, Golden JW, Silvera P, Dudek J, Alterson K, Custer M, Rivers B, Morris J, Owens G, et al.: Molecular smallpox vaccine delivered by alphavirus replicons elicits protective immunity in mice and non-human primates. Vaccine 2009, 28(2):494-511.
  • [9]Hooper JW, Golden JW, Ferro AM, King AD: Smallpox DNA vaccine delivered by novel skin electroporation device protects mice against intranasal poxvirus challenge. Vaccine 2007, 25(10):1814-1823.
  • [10]Hooper JW, Thompson E, Wilhelmsen C, Zimmerman M, Ichou MA, Steffen SE, Schmaljohn CS, Schmaljohn AL, Jahrling PB: Smallpox DNA vaccine protects nonhuman primates against lethal monkeypox. J Virol 2004, 78(9):4433-4443.
  • [11]Sakhatskyy P, Wang S, Chou TH, Lu S: Immunogenicity and protection efficacy of monovalent and polyvalent poxvirus vaccines that include the D8 antigen. Virology 2006, 355(2):164-174.
  • [12]Sakhatskyy P, Wang S, Zhang C, Chou TH, Kishko M, Lu S: Immunogenicity and protection efficacy of subunit-based smallpox vaccines using variola major antigens. Virology 2008, 371(1):98-107.
  • [13]Xiao Y, Aldaz-Carroll L, Ortiz AM, Whitbeck JC, Alexander E, Lou H, Davis HL, Braciale TJ, Eisenberg RJ, Cohen GH, et al.: A protein-based smallpox vaccine protects mice from vaccinia and ectromelia virus challenges when given as a prime and single boost. Vaccine 2007, 25(7):1214-1224.
  • [14]Payne LG: Characterization of vaccinia virus glycoproteins by monoclonal antibody precipitation. Virology 1992, 187(1):251-260.
  • [15]Roper RL, Payne LG, Moss B: Extracellular vaccinia virus envelope glycoprotein encoded by the A33R gene. J Virol 1996, 70(6):3753-3762.
  • [16]Wolffe EJ, Weisberg AS, Moss B: The vaccinia virus A33R protein provides a chaperone function for viral membrane localization and tyrosine phosphorylation of the A36R protein. J Virol 2001, 75(1):303-310.
  • [17]Grosenbach DW, Hansen SG, Hruby DE: Identification and analysis of vaccinia virus palmitylproteins. Virology 2000, 275(1):193-206.
  • [18]Ward BM, Weisberg AS, Moss B: Mapping and functional analysis of interaction sites within the cytoplasmic domains of the vaccinia virus A33R and A36R envelope proteins. J Virol 2003, 77(7):4113-4126.
  • [19]Breiman A, Carpentier DC, Ewles HA, Smith GL: Transport and stability of the vaccinia virus A34 protein is affected by the A33 protein. J Gen Virol 2013, 94(Pt 4):720-725.
  • [20]Roper RL, Wolffe EJ, Weisberg A, Moss B: The envelope protein encoded by the A33R gene is required for formation of actin-containing microvilli and efficient cell-to-cell spread of vaccinia virus. J Virol 1998, 72(5):4192-4204.
  • [21]Rottger S, Frischknecht F, Reckmann I, Smith GL, Way M: Interactions between vaccinia virus IEV membrane proteins and their roles in IEV assembly and actin tail formation. J Virol 1999, 73(4):2863-2875.
  • [22]Smith GL, Vanderplasschen A, Law M: The formation and function of extracellular enveloped vaccinia virus. J Gen Virol 2002, 83(Pt 12):2915-2931.
  • [23]Lustig S, Fogg C, Whitbeck JC, Eisenberg RJ, Cohen GH, Moss B: Combinations of polyclonal or monoclonal antibodies to proteins of the outer membranes of the two infectious forms of vaccinia virus protect mice against a lethal respiratory challenge. J Virol 2005, 79(21):13454-13462.
  • [24]Chen Z, Earl P, Americo J, Damon I, Smith SK, Yu F, Sebrell A, Emerson S, Cohen G, Eisenberg RJ, et al.: Characterization of chimpanzee/human monoclonal antibodies to vaccinia virus A33 glycoprotein and its variola virus homolog in vitro and in a vaccinia virus mouse protection model. J Virol 2007, 81(17):8989-8995.
  • [25]Hahn CS, Hahn YS, Braciale TJ, Rice CM: Infectious Sindbis virus transient expression vectors for studying antigen processing and presentation. Proc Natl Acad Sci USA 1992, 89(7):2679-2683.
  • [26]Golden JW, Hooper JW: Heterogeneity in the A33 protein impacts the cross-protective efficacy of a candidate smallpox DNA vaccine. Virology 2008, 377(1):19-29.
  • [27]He Y, Wang Y, Struble EB, Zhang P, Chowdhury S, Reed JL, Kennedy M, Scott DE, Fisher RW: Epitope mapping by random peptide phage display reveals essential residues for vaccinia extracellular enveloped virion spread. Virol J 2012, 9:217. BioMed Central Full Text
  • [28]Melamed S, Paran N, Katz L, Ben-Nathan D, Israely T, Schneider P, Levin R, Lustig S: Tail scarification with Vaccinia virus Lister as a model for evaluation of smallpox vaccine potency in mice. Vaccine 2007, 25(45):7743-7753.
  • [29]Paran N, Suezer Y, Lustig S, Israely T, Schwantes A, Melamed S, Katz L, Preuss T, Hanschmann KM, Kalinke U, et al.: Postexposure immunization with modified vaccinia virus Ankara or conventional Lister vaccine provides solid protection in a murine model of human smallpox. J Infect Dis 2009, 199(1):39-48.
  • [30]Parker S, Siddiqui AM, Oberle C, Hembrador E, Lanier R, Painter G, Robertson A, Buller RM: Mousepox in the C57BL/6 strain provides an improved model for evaluating anti-poxvirus therapies. Virology 2009, 385(1):11-21.
  • [31]Duraffour S, Mertens B, Meyer H, van den Oord JJ, Mitera T, Matthys P, Snoeck R, Andrei G: Emergence of cowpox: study of the virulence of clinical strains and evaluation of antivirals. PLoS One 2013, 8(2):e55808.
  • [32]McCollum AM, Austin C, Nawrocki J, Howland J, Pryde J, Vaid A, Holmes D, Weil MR, Li Y, Wilkins K, et al.: Investigation of the first laboratory-acquired human cowpox virus infection in the United States. J Infect Dis 2012, 206(1):63-68.
  • [33]Nielsen M, Lundegaard C, Worning P, Lauemoller SL, Lamberth K, Buus S, Brunak S, Lund O: Reliable prediction of T-cell epitopes using neural networks with novel sequence representations. Protein Sci 2003, 12(5):1007-1017.
  • [34]Parker KC, Bednarek MA, Coligan JE: Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains. J Immunol 1994, 152(1):163-175.
  • [35]Rammensee H, Bachmann J, Emmerich NP, Bachor OA, Stevanovic S: SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 1999, 50(3–4):213-219.
  • [36]Tscharke DC, Woo WP, Sakala IG, Sidney J, Sette A, Moss DJ, Bennink JR, Karupiah G, Yewdell JW: Poxvirus CD8+ T-cell determinants and cross-reactivity in BALB/c mice. J Virol 2006, 80(13):6318-6323.
  • [37]Levi R, Arnon R: Synthetic recombinant influenza vaccine induces efficient long-term immunity and cross-strain protection. Vaccine 1996, 14(1):85-92.
  • [38]Sidney J, Assarsson E, Moore C, Ngo S, Pinilla C, Sette A, Peters B: Quantitative peptide binding motifs for 19 human and mouse MHC class I molecules derived using positional scanning combinatorial peptide libraries. Immunome Res 2008, 4:2. BioMed Central Full Text
  • [39]Moutaftsi M, Peters B, Pasquetto V, Tscharke DC, Sidney J, Bui HH, Grey H, Sette A: A consensus epitope prediction approach identifies the breadth of murine T(CD8+)-cell responses to vaccinia virus. Nat Biotechnol 2006, 24(7):817-819.
  • [40]Lustig S, Fogg C, Whitbeck JC, Moss B: Synergistic neutralizing activities of antibodies to outer membrane proteins of the two infectious forms of vaccinia virus in the presence of complement. Virology 2004, 328(1):30-35.
  • [41]Sirven P, Castelli FA, Probst A, Szely N, Maillere B: In vitro human CD4+ T cell response to the vaccinia protective antigens B5R and A33R. Mol Immunol 2009, 46(7):1481-1487.
  • [42]Thornburg NJ, Ray CA, Collier ML, Liao HX, Pickup DJ, Johnston RE: Vaccination with Venezuelan equine encephalitis replicons encoding cowpox virus structural proteins protects mice from intranasal cowpox virus challenge. Virology 2007, 362(2):441-452.
  • [43]McCoy WH, Wang X, Yokoyama WM, Hansen TH, Fremont DH: Cowpox virus employs a two-pronged strategy to outflank MHCI antigen presentation. Mol Immunol 2013, 55(2):156-158.
  • [44]Erez N, Paran N, Maik-Rachline G, Politi B, Israely T, Schnider P, Fuchs P, Melamed S, Lustig S: Induction of cell-cell fusion by ectromelia virus is not inhibited by its fusion inhibitory complex. Virol J 2009, 6:151. BioMed Central Full Text
  • [45]Paran N, De Silva FS, Senkevich TG, Moss B: Cellular DNA ligase I is recruited to cytoplasmic vaccinia virus factories and masks the role of the vaccinia ligase in viral DNA replication. Cell Host Microbe 2009, 6(6):563-569.
  • [46]Xu RH, Fang M, Klein-Szanto A, Sigal LJ: Memory CD8+ T cells are gatekeepers of the lymph node draining the site of viral infection. Proc Natl Acad Sci USA 2007, 104(26):10992-10997.
  • [47]Oseroff C, Peters B, Pasquetto V, Moutaftsi M, Sidney J, Panchanathan V, Tscharke DC, Maillere B, Grey H, Sette A: Dissociation between epitope hierarchy and immunoprevalence in CD8 responses to vaccinia virus western reserve. J Immunol 2008, 180(11):7193-7202.
  文献评价指标  
  下载次数:112次 浏览次数:31次