期刊论文详细信息
Molecular Cytogenetics
First detailed reconstruction of the karyotype of Trachypithecus cristatus (Mammalia: Cercopithecidae)
Anja Weise3  Marcelo de Bello Cioffi2  Thomas Liehr7  Arunrat Chaveerach1  Alongkoad Tanomtong1  Weerayuth Supiwong1  Nadezda Kosyakova7  Pornnarong Siripiyasing6  Hasmik Mkrtchyan5  Krit Pinthong4  Fan Xiaobo7 
[1] Department of Biology, Faculty of Science, Khon Kaen University, 123 Moo 16 Mittapap Rd., Khon Kaen, Muang District 40002, Thailand;Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil;Institut für Humangenetik, Postfach, Jena D-07740, Germany;Faculty of Science and Technology, Surindra Rajabhat University, 186 Moo 1, Surin, Maung District 32000, Thailand;Center of Medical Genetics and Primary Health Care, Abovyan Str 34/3, 001, Yerevan, Armenia;Faculty of Science and Technology, Rajabhat Maha Sarakham University, 80 Nakonsawan Rd, Maha Sarakham, Talad, Maung District 44000, Thailand;Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Kollegiengasse 10, Jena D-07743, Germany
关键词: XY1Y2 sex system;    Old world monkeys;    Multicolor banding;    Evolutionary conserved breakpoints;   
Others  :  1150522
DOI  :  10.1186/1755-8166-6-58
 received in 2013-11-15, accepted in 2013-11-21,  发布年份 2013
PDF
【 摘 要 】

Background

The chromosomal homologies of human (Homo sapiens = HSA) and silvered leaf monkey (Trachypithecus cristatus = TCR) have been previously studied by classical chromosome staining and by fluorescence in situ hybridization (FISH) applying chromosome-specific DNA probes of all human chromosomes in the 1980s and 1990s, respectively.

Results

However, as the resolution of these techniques is limited we used multicolor banding (MCB) at an ~250-band level, and other selected human DNA probes to establish a detailed chromosomal map of TCR. Therefore it was possible to precisely determine evolutionary conserved breakpoints, orientation of segments and distribution of specific regions in TCR compared to HSA. Overall, 69 evolutionary conserved breakpoints including chromosomal segments, which failed to be resolved in previous reports, were exactly identified and characterized.

Conclusions

This work also represents the first molecular cytogenetic one characterizing a multiple sex chromosome system with a male karyotype 44,XY1Y2. The obtained results are compared to other available data for old world monkeys and drawbacks in hominoid evolution are discussed.

【 授权许可】

   
2013 Xiaobo et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150405191715578.pdf 1401KB PDF download
Figure 2. 93KB Image download
Figure 1. 109KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Raffles TS: Descriptive catalogue of a zoological collection, made on account of the Honourable East India Company, in the island of Sumatra and its vicinity, under the direction of Sir Thomas Stanford Raffles, Lieutenant-Governor of Fort Marlborough: with additional notices of the natural history of those countries. Transact Linn Soc London 1821, 13:239-274.
  • [2]Harding LE: Trachypithecus cristatus (Primates: Cercopithecidae). Mamm Species 2010, 42:149-165.
  • [3]Fooden J: Primates obtained in peninsular Thailand June–July, 1973, with notes on the distribution of continental Southeast Asian leaf- monkeys (Presbytis). Primates 1976, 17:95-118.
  • [4]Roos C, Nadler T, Walter L: Mitochondrial phylogeny, taxonomy and biogeography of the silvered langur species group (Trachypithecus cristatus). Mol Phylogenet Evol 2008, 47:629-636.
  • [5]Hsu TC, Benirschke K: An atlas of mammalian chromosomes. Edited by Hsu TC, Benirschke K. NewYork: Springer-Verlag, Folio 199; 1970.
  • [6]Dutrillaux B, Couturier J, Muleris M, Lombard M, Chauvier G: Chromosomal phylogeny of forty-two species or subspecies of cercopithecoids (Primates Catarrhini). Ann Genet 1982, 25:96-109.
  • [7]Ponsa M, de Boer LEM, Egozcue J: Banding patterns of the chromosomes of Presbytis cristatus pyrrhus and P. obscurus. Am J Primatol 1983, 4:165-169.
  • [8]Muleris M, Couturier J, Dutrillaux B: Phylogénie chromosomique des Cercopithecoidea. Mammalia 1986, 50:38-52.
  • [9]Dutrillaux B, Webb G, Muleris M, Couturier J, Butler R: Chromosome study of Presbytis cristatus: presence of a complex Y-autosome rearrangement in the male. Ann Genet 1984, 27:148-153.
  • [10]Bigoni F, Koehler U, Stanyon R, Ishida T, Wienberg J: Fluorescene in situ hybridization establishes homology between human and silvered leaf monkey chromosomes, reveals reciprocal translocations between chromosomes homologous to human Y/5, 1/9, and 6/16, and delineates an X1X2Y1Y2/X1X1X2X2 sex-chromosome system. Am J Phys Anthropol 1997, 102:315-327.
  • [11]Graphodatsky AS, Trifonov VA, Stanyon R: The genome diversity and karyotype evolution of mammals. Mol Cytogenet 2011, 4:22. BioMed Central Full Text
  • [12]Mrasek K, Heller A, Rubtsov N, Trifonov V, Starke H, Rocchi M, Claussen U, Liehr T: Reconstruction of the female Gorilla gorilla karyotype using 25-color FISH and multicolor banding (MCB). Cytogenet Cell Genet 2001, 93:242-248.
  • [13]Mrasek K, Heller A, Rubtsov N, Trifonov V, Starke H, Claussen U, Liehr T: Detailed Hylobates lar karyotype defined by 25-color FISH and multicolor banding. Int J Mol Med 2003, 12:139-146.
  • [14]Weise A, Heller A, Starke H, Mrasek K, Kuechler A, Pool-Zobel BL, Claussen U, Liehr T: Multitude multicolor chromosome banding (mMCB) - a comprehensive one-step multicolor FISH banding method. Cytogenet Genome Res 2003, 103:34-39.
  • [15]Stanyon R, Rocchi M, Capozzi O, Roberto R, Misceo D, Ventura M, Cardone MF, Bigoni F, Archidiacono N: Primate chromosome evolution: ancestral karyotypes, marker order and neocentromeres. Chromosome Res 2008, 16:17-39.
  • [16]Ventura M, Antonacci F, Cardone MF, Stanyon R, D'Addabbo P, Cellamare A, Sprague LJ, Eichler EE, Archidiacono N, Rocchi M: Evolutionary formation of new centromeres in macaque. Science 2007, 316:243-246.
  • [17]Rocchi M, Archidiacono N, Schempp W, Capozzi O, Stanyon R: Centromere repositioning in mammals. Heredity 2012, 108:59-67.
  • [18]Manvelyan M, Schreyer I, Höls-Herpertz I, Köhler S, Niemann R, Hehr U, Belitz B, Bartels I, Götz J, Huhle D, Kossakiewicz M, Tittelbach H, Neubauer S, Polityko A, Mazauric ML, Wegner R, Stumm M, Küpferling P, Süss F, Kunze H, Weise A, Liehr T, Mrasek K: Forty-eight new cases with infertility due to balanced chromosomal rearrangements: detailed molecular cytogenetic analysis of the 90 involved breakpoints. Int J Mol Med 2007, 19:855-864.
  • [19]Mrasek K, Schoder C, Teichmann AC, Behr K, Franze B, Wilhelm K, Blaurock N, Claussen U, Liehr T, Weise A: Global screening and extended nomenclature for 230 aphidicolin-inducible fragile sites, including 61 yet unreported ones. Int J Oncol 2010, 36:929-940.
  • [20]Pevzner P, Tesler G: Human and mouse genomic sequences reveal extensive breakpoint reuse in mammalian evolution. Proc Natl Acad Sci U S A 2003, 100:7672-7677.
  • [21]Bailey JA, Baertsch R, Kent WJ, Haussler D, Eichler EE: Hotspots of mammalian chromosomal evolution. Genome Biol 2004, 5:R23. BioMed Central Full Text
  • [22]Murphy WJ, Larkin DM, Everts-van der Wind A, Bourque G, Tesler G, Auvil L, Beever JE, Chowdhary BP, Galibert F, Gatzke L, Hitte C, Meyers SN, Milan D, Ostrander EA, Pape G, Parker HG, Raudsepp T, Rogatcheva MB, Schook LB, Skow LC, Welge M, Womack JE, O'brien SJ, Pevzner PA, Lewin HA: Dynamics of mammalian chromosome evolution inferred from multispecies comparative maps. Science 2005, 309:613-617.
  • [23]Ruiz-Herrera A, Castresana J, Robinson TJ: Is mammalian chromosomal evolution driven by regions of genome fragility? Genome Biol 2006, 7:R115. BioMed Central Full Text
  • [24]Ruiz-Herrera A, Robinson TJ: Chromosomal instability in Afrotheria: fragile sites, evolutionary breakpoints and phylogenetic inference from genome sequence assemblies. BMC Evol Biol 2007, 7:199. BioMed Central Full Text
  • [25]Misceo D, Capozzi O, Roberto R, Dell'oglio MP, Rocchi M, Stanyon R, Archidiacono N: Tracking the complex flow of chromosome rearrangements from the Hominoidea Ancestor to extant Hylobates and Nomascus Gibbons by high-resolution synteny mapping. Genome Res 2008, 18:1530-1537.
  • [26]Alekseyev MA, Pevzner PA: Comparative genomics reveals birth and death of fragile regions in mammalian evolution. Genome Biol 2010, 11:R117. BioMed Central Full Text
  • [27]Ma NS, Elliott MW, Morgan L, Miller A, Jones TC: Translocation of Y chromosome to an autosome in the Bolivian owl monkey, Aotus. Am J Phys Anthropol 1976, 45:191-202.
  • [28]Solari AJ, Rahn MI: Fine structure and meiotic behaviour of the male multiple sex chromosomes in the genus Alouatta. Cytogenet Genome Res 2005, 108:262-267.
  • [29]Fredga K: Unusual sex chromosome inheritance in mammals. Philos Trans R Soc Lond B Biol Sci 1970, 259:15-36.
  • [30]Toder R, O'Neill RJ, Wienberg J, O'Brien PC, Voullaire L, Marshall-Graves JA: Comparative chromosome painting between two marsupials: origins of an XX/XY1Y2 sex chromosome system. Mamm Genome 1997, 8:418-422.
  • [31]Conte RA, Kleyman SM, Klein V, Bialer MG, Verma RS: Characterization of a de novo t(Y;9) (q11.2;q22) by FISH technique. Ann Genet 1996, 39:10-15.
  • [32]Pinho MJ, Neves R, Costa P, Ferrás C, Sousa M, Alves C, Almeida C, Fernandes S, Silva J, Ferrás L, Barros A: Unique t(Y;1)(q12;q12) reciprocal translocation with loss of the heterochromatic region of chromosome 1 in a male with azoospermia due to meiotic arrest: a case report. Hum Reprod 2005, 20:689-696.
  • [33]Charlesworth B, Wall JD: Inbreeding, heterozygote advantage and the evolution of neo-X and neo-Y sex chromosomes. Proceedings: Biological Sciences 1999, 266:51-56.
  • [34]Yoshida K, Kitano J: The contribution of female meiotic drive to the evolution of neo-sex chromosomes. Evolution 2012, 66:3198-3208.
  • [35]Liehr T, Claussen U: Current developments in human molecular cytogenetic techniques. Curr Mol Med 2002, 2:283-297.
  • [36]Weise A, Mrasek K, Fickelscher I, Claussen U, Cheung SW, Cai WW, Liehr T, Kosyakova N: Molecular definition of high-resolution multicolor banding probes: first within the human DNA sequence anchored FISH banding probe set. J Histochem Cytochem 2008, 56:487-493.
  • [37]Liehr T, Heller A, Starke H, Rubtsov N, Trifonov V, Mrasek K, Weise A, Kuechler A, Claussen U: Microdissection based high resolution multicolor banding for all 24 human chromosomes. Int J Mol Med 2002, 9:335-339.
  • [38]Bucksch M, Ziegler M, Kosayakova N, Mulatinho MV, Llerena JC Jr, Morlot S, Fischer W, Polityko AD, Kulpanovich AI, Petersen MB, Belitz B, Trifonov V, Weise A, Liehr T, Hamid AB: A new multicolor fluorescence in situ hybridization probe set directed against human heterochromatin: HCM-FISH. J Histochem Cytochem 2012, 60:530-536.
  文献评价指标  
  下载次数:26次 浏览次数:9次