期刊论文详细信息
Particle and Fibre Toxicology
Control of sand flies with attractive toxic sugar baits (ATSB) and potential impact on non-target organisms in Morocco
John C Beier2  Daniel L Kline1  Axel Hausmann5  Yosef Schlein3  Rui-De Xue6  Kristopher L Arheart2  Vasiliy D Kravchenko7  Elyes Zhioua9  Edita E Revay4  Khalid Khallaayoune8  Gunter C Müller3  Whitney A Qualls2 
[1] United States Department of Agriculture-ARS-Center for Medical, Agricultural, and Veterinary Entomology, Gainesville, FL, USA;Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami 33136, FL, USA;Department of Microbiology and Molecular Genetics, Kuvin Centre for the Study of Infectious and Tropical Diseases, Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel;Department of Anatomy and Cell Biology, Bruce Rappaport Faculty of Medicine Technion,, Haifa, 34995, Israel;SNSB-Zoologische Staatssammlung Munchen, Munchhausenstrasse 21, Muunchen, Germany;Anastasia Mosquito Control District, 500 Old Beach Road, St. Augustine, FL 32080, U.S.A;Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel;Department of Parasitology, Institut Agronomique et Vétérinaire Hassan II, Rabat-Instituts, B.P. 6202, Morocco;Laboratory of Vector Ecology, Pasteur Institute of Tunis, 13 Place Pasteur BP 74, 1002, Tunis, Tunisia
关键词: Environmental impact;    Vector-borne diseases;    Vector control;    Leishmaniasis;    Integrated vector management;   
Others  :  1147043
DOI  :  10.1186/s13071-015-0671-2
 received in 2014-11-05, accepted in 2015-01-18,  发布年份 2015
PDF
【 摘 要 】

Background

The persistence and geographical expansion of leishmaniasis is a major public health problem that requires the development of effective integrated vector management strategies for sand fly control. Moreover, these strategies must be economically and environmentally sustainable approaches that can be modified based on the current knowledge of sand fly vector behavior. The efficacy of using attractive toxic sugar baits (ATSB) for sand fly control and the potential impacts of ATSB on non-target organisms in Morocco was investigated.

Methods

Sand fly field experiments were conducted in an agricultural area along the flood plain of the Ourika River. Six study sites (600 m x 600 m); three with “sugar rich” (with cactus hedges bearing countless ripe fruits) environments and three with “sugar poor” (green vegetation only suitable for plant tissue feeding) environments were selected to evaluate ATSB, containing the toxin, dinotefuran. ATSB applications were made either with bait stations or sprayed on non-flowering vegetation. Control sites were established in both sugar rich and sugar poor environments. Field studies evaluating feeding on vegetation treated with attractive (non-toxic) sugar baits (ASB) by non-target arthropods were conducted at both sites with red stained ASB applied to non-flowering vegetation, flowering vegetation, or on bait stations.

Results

At both the sites, a single application of ATSB either applied to vegetation or bait stations significantly reduced densities of both female and male sand flies (Phlebotomus papatasi and P. sergenti) for the five-week trial period. Sand fly populations were reduced by 82.8% and 76.9% at sugar poor sites having ATSB applied to vegetation or presented as a bait station, respectively and by 78.7% and 83.2%, respectively at sugar rich sites. The potential impact of ATSB on non-targets, if applied on green non-flowering vegetation and bait stations, was low for all non-target groups as only 1% and 0.7% were stained with non-toxic bait respectively when monitored after 24 hours.

Conclusions

The results of this field study demonstrate ATSB effectively controls both female and male sand flies regardless of competing sugar sources. Furthermore, ATSB applied to foliar vegetation and on bait stations has low non-target impact.

【 授权许可】

   
2015 Qualls et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150403194844404.pdf 1090KB PDF download
Figure 3. 49KB Image download
Figure 2. 57KB Image download
Figure 1. 101KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Control of the Leishmaniases, World Technical Report Series. WHO Press. World Health Organization, Geneva, Switzerland; 2010.
  • [2]Desjeux P. The increase in risk factors for leishmaniasis worldwide. Trans Roy Soc Trop Med Hyg. 2011; 95:239-43.
  • [3]Rioux JA, Lanotte G, Peter F, Dereure J, Akalay O, Pratlong F et al.. Les leishmanioses cutanées du bassin Méditerranéen occidental, de lidentification enzymatique à l’analyse écoépidémiologique. L’exemple de trois “foyers”, tunisien marocain et français. In: Leishmania Taxonomie et Phylogenèse. Applications écoépidémiologiques. Coll Int Centre National de la Recherche Médical, IMEEE, Montpellier, France; 1984: p.365-95.
  • [4]Pratlong FJ, Rioux JA, Dereure J, Mahjour J, Gallego M, Guilvard E et al.. Leishmania tropica au Maroc IV-Diversité isoenzymatique intrafocale. Ann Parasitol Hum Comp. 1991; 66:100-4.
  • [5]Alvar J, Velez ID, Bern C, Herrero M, Desjeux P, Cano J et al.. Leishmaniasis worldwide and global estimates of incidence. PLoS One. 2012; 7:e35671.
  • [6]Daulaire N. Globalization and health. Development. 1999; 4:22-4.
  • [7]Handbook for Integrated Vector Management. WHO Press. WHO, Geneva, Switzerland; 2012.
  • [8]Sharma U, Singh S. Insect vectors of Leishmania: distribution, physiology, and their control. J Vector Borne Dis. 2008; 45:255-72.
  • [9]Alexander B, Maroli M. Control of phlebotomine sandflies. Med Vet Entomol. 2003; 17:1-18.
  • [10]Davies CR, Kaye P, Croft SL, Sundar S. Leishmaniasis: new approaches to disease control. BMJ. 2003; 326:377-82.
  • [11]Maroli M, Khoury C. Prevention and control of leishmaniasis vectors: current approaches. Parassitologia. 2004; 46:211-5.
  • [12]Kishore K, Kumar V, Kesari S, Dinesh DS, Kumar AJ, Das P et al.. Vector control in leishmaniasis. Ind J Med Res. 2006; 123:467-72.
  • [13]Kassi M, Kasi PM, Marri SM, Tareen I, Khawar T. Vector control in cutaneous leishmaniasis of the old world: a review of literature. Dermatol Online J. 2008; 14:1.
  • [14]Amora SS, Bevilaqua CM, Feijo FM. Control of phlebotomine (Diptera: Psychodidae) leishmaniasis vectors. Neotrop Entomol. 2009; 38:303-10.
  • [15]Joshi AB, Bhatt LR, Regmi S, Ashford RW. An assessment of the effectiveness of insecticide spray in the control of visceral leishmaniasis in Nepal. J Nepal Health Res Council. 2003; 1:1-6.
  • [16]Russell EC, Burkett DA, Putnam JL, Sherwood V, Caci JB, Jennings BT et al.. Impact of Phlebotomine sand flies on U.S. military operations at Tallil Air Base, Iraq: 1. Background, Military Situation, and Development of a “Leishmaniasis Control Program”. J Med Enotomol. 2006; 43:647-62.
  • [17]Schlein Y, Müller GC. Experimental control of Phlebotomus papatasi by spraying attractive toxic sugar bait (ATSB) on vegetation. Trans R Soc Trop Med Hyg. 2010; 104:766-71.
  • [18]Müller GC, Schlein Y. Different methods of using attractive toxic sugar baits (ATSB) for the control of Phlebotomus papatasi. J Vector Ecol. 2011; 36:64-70.
  • [19]Schlein Y, Warburg A. Phytophagy and the feeding cycle of Phlebotomus papatasi (Diptera: Psychodidae) under experimental conditions. J Med Entomol. 1986; 23:11-5.
  • [20]Moore JS, Kelly TB, Killick-Kendrick R, Killick-Kendrick M, Wallbanks KR, Molyneux DH. Honeydew sugars in wild-caught Phlebotomus ariasi detected by high performance liquid chromatography (HPLC) and gas chromatography (GC). J Med Vet Entomol. 1987; 1:427-34.
  • [21]Müller GC, Schlein Y. Nectar and honeydew feeding of Phlebotomus papatasi in a focus of Leishmania major in Neot Hakikar oasis. J Vector Ecol. 2004; 29:154-8.
  • [22]Khallaayoune K, Qualls WA, Revay EE, Allan SA, Arheart KL, Kravchenko VD et al.. Attractive toxic sugar baits: Control of mosquitoes with the low risk active ingredient dinotefuran and potential impacts on non-target organisms in Morocco. J Med Entomol. 2013; 42:1040-5.
  • [23]Schlein Y, Müller GC. An approach to mosquito control: using the dominant attraction of flowering Tamarix jordani trees against Culex pipiens. J Med Entomol. 2008; 45:384-90.
  • [24]Müller GC, Revay EE, Beier JC. Simplified and improved monitoring traps for sampling sand flies. J Vector Eco. 2011; 36:454-7.
  • [25]Hausmann A. Zur Dynamik von Nachtfalter-Artenspektren: Turnover und Dispersionsverhalten als Elemente von Verbreitungsstrategien. Spixiana Suppl. 1990; 16:1-222.
  • [26]EPA 2012 a. 712-C-017: Ecological Effects Test Guidelines: OCSPP 850. 3040: Field Testing for Pollinators. EPA Headquarters Publishing
  • [27]EPA 2012b. 712-C-018: Ecological Effects Test Guidelines: OCSPP 850.3030: Honey Bee Toxicity of Residues on Foliage. EPA Headquarters Publishing
  • [28]EPA 2012 c. 712-C-019: Ecological Effects Test Guidelines: OCSPP 850.3020: Honey Bee Acute Contact Toxicity Test. EPA Headquarters Publishing
  • [29]Müller GC, Kravchenko VD, Schlein Y. Die Erforschung der Israelischen LepidopterenFauna, Book chapter. In: Tiere und Kunst aus Israel. Schoenitzer, K (ed.): Berichte der Freunde der Zoologischen Staatssammlung München Germany, 2005 2: 30-39
  • [30]Müller GC, Schlein Y. Sugar questing mosquitoes in arid areas gather on scarce blossoms that can be used for control. Int J Parasitol. 2006; 36:1077-80.
  • [31]Boussaa S, Guernaoui S, Pesson B, Boumezzough A. Seasonal fluctuations of phlebotomine sand fly populations (Diptera: Psychodidae) in the urban area of Marrakech, Morocco. Acta Trop. 2004; 95:86-91.
  • [32]Qualls WA, Müller GC, Revay EE, Allan SA, Arheart KL, Beier JC et al.. Evaluation of attractive toxic sugar bait (ATSB)-barrier for control of vector and nuisance mosquitoes and its effect on non-target organisms in sub-tropical environments in Florida. Acta Trop. 2013; 131:104-10.
  • [33]Naranjo DP, Qualls WA, Alimi TO, Roque DD, Samson DM, Arheart KC et al.. Evaluation of boric acid sugar baits againstAedes albopictus (Diptera:Culicidae) in tropical environments. Parasitol Res. 2013; 112:1583-7.
  • [34]Gu W, Muller G, Schlein Y, Novak RJ, Beier J. Natural plant sugar sources of Anopheles mosquitoes strongly impact malaria transmission potential. PLosONE. 2011; 6:e15996.
  • [35]Beier JC, Muller GC, Gu W, Arheart KL, Schlein Y. Attractive toxic sugar baits (ATSB) methods decimate populations of Anopheles malaria vectors in arid environments regardless of the local availability of favoured sugar-source blossoms. Malaria J. 2012; 11:31-8.
  • [36]Tomizawa M, Yamamoto I. Structure-activity relationships of nicotinoids and imidacloprid analogs. J Pestici Sci. 1993; 18:91-8.
  • [37]Corbel V, Duchon S, Zaim M, Hougard JM. Dinotefuran: A potential neonicotinoid insecticide against resistant mosquitoes. J Med Entomol. 2004; 41:712-7.
  • [38]Orshan L, Szekely D, Schnur H, Wilamowski A, Galer Y, Bitton S et al.. Attempts to control sand flies by insecticide-sprayed strips along the periphery of a village. J Vect Ecol. 2005; 31:113-7.
  • [39]Revay EE, Müller GC, Qualls WA, Kline DK, Naranjo DP, Arheart KL et al.. Control of Aedes albopictus with attractive toxic sugar baits (ATSB) and potential impact on non-target organisms in St. Augustine, Florida. Parasitology. 2013; 113:73-9.
  • [40]Lee D. Nature’s palette. University of Chicago Press, London, England; 2007.
  • [41]Allan SA, Day JF, Edman JD. Visual ecology of biting flies. Ann Rev Entomol. 1987; 32:297-316.
  • [42]Müller GC, Beier JC, Traore SF, Toure MB, Traore MM, Bah S et al.. Successful field trial of attractive toxic sugar bait (ATSB) plant-spraying methods against malaria vectors in the Anopheles gambiae complex in Mali, West Africa. Malar J. 2010; 9:210.
  • [43]Qualls WA, Xue RD, Revay EE, Allan SA, Müller GC. Implications for operational control of adult mosquito production in cisterns and wells in St. Augustine, Florida using attractive sugar baits. Acta Trop. 2012; 124:158-61.
  • [44]Müller GC, Kravchenko VD, Schlein Y. Decline of Anopheles sergentii and Aedes caspius populations following presentation of attractive toxic (spinosad) sugar bait stations in an oasis. J Am Mosq Control Assoc. 2008; 24:147-9.
  • [45]Müller GC, Junnila A, Qualls WA, Revay EE, Kline DK, Allan SA et al.. Control of Culex quinquefasciatus in a storm drain system in Florida using attractive toxic sugar baits. J Med Vet Entomol. 2010; 24:346-51.
  • [46]Beier JC, Müller GC, Gu W, Arheart KL, Schlein Y. Attractive toxic sugar bait (ATSB) methods decimate populations of Anopheles malaria vectors in arid environments regardless of the local availability of favored sugar-source blossoms. Malar J. 2012; 11:31.
  文献评价指标  
  下载次数:20次 浏览次数:7次