期刊论文详细信息
Molecular Neurodegeneration
Cytoplasmic mislocalization of RNA splicing factors and aberrant neuronal gene splicing in TDP-43 transgenic pig brain
Liangxue Lai3  Xiao-Jiang Li4  Shihua Li4  Lin Guo3  Nana Fan3  Tao Liu3  Yu Zhao3  Zhaoming Liu3  Peng Yin2  Zhen Ouyang3  Bentian Zhao3  Xudong Liu1  Chuan-En Wang4  Sen Yan4  Huaqiang Yang3  Guohao Wang1 
[1] University of Chinese Academy of Sciences, Beijing 100049, China;State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China;Department of Human Genetics, Emory University School of Medicine, Atlanta 30322, GA, USA
关键词: transgenic Pig;    ALS;    NMHC II-B;    NeuN;    PSF;    TDP-43;   
Others  :  1224814
DOI  :  10.1186/s13024-015-0036-5
 received in 2015-04-12, accepted in 2015-08-10,  发布年份 2015
PDF
【 摘 要 】

Background

TAR DNA-binding protein 43 (TDP-43) is a nuclear protein, but it is redistributed in the neuronal cytoplasm in both amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Because small transgenic animal models often lack cytoplasmic TDP-43, how the cytoplasmic accumulation of TDP-43 contributes to these diseases remains unclear. The current study is aimed at studying the mechanism of cytoplasmic pathology of TDP-43.

Results

We established transgenic pigs expressing mutant TDP-43 (M337V). This pig model shows severe phenotypes and early death. We found that transgenic TDP-43 is also distributed in the cytoplasm of neuronal cells in the spinal cord and brain. Transgenic TDP-43 interacts with PSF, an RNA splicing factor that associates with NeuN to regulate neuronal RNA splicing. The interaction of TDP-43, PSF and NeuN causes PSF and NeuN mislocalize into the neuronal cytoplasm in transgenic pigs. Consistently, abnormal PSF-related neuronal RNA splicing is seen in TDP-43 transgenic pigs. The cytoplasmic localization of PSF and NeuN as well as abnormal PSF-related neuronal RNA splicing was also found in ALS patient brains.

Conclusion

Our findings from a large mammalian model suggest that cytoplasmic mutant TDP-43 could reduce the nuclear function of RNA splicing factors, contributing to neuropathology.

【 授权许可】

   
2015 Wang et al.

【 预 览 】
附件列表
Files Size Format View
20150914041712820.pdf 2998KB PDF download
Fig. 12. 67KB Image download
Fig. 11. 111KB Image download
Fig. 10. 212KB Image download
Fig. 9. 56KB Image download
Fig. 8. 82KB Image download
Fig. 7. 140KB Image download
Fig. 6. 41KB Image download
Fig. 5. 134KB Image download
Fig. 4. 200KB Image download
Fig. 3. 122KB Image download
Fig. 2. 91KB Image download
Fig. 1. 39KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

Fig. 9.

Fig. 10.

Fig. 11.

Fig. 12.

【 参考文献 】
  • [1]Krecic AM, Swanson MS. hnRNP complexes: composition, structure, and function. Curr Opin Cell Biol. 1999; 11(3):363-71.
  • [2]Polymenidou M, Lagier-Tourenne C, Hutt KR, Huelga SC, Moran J, Liang TY et al.. Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43. Nat Neurosci. 2011; 14(4):459-68.
  • [3]Tollervey JR, Curk T, Rogelj B, Briese M, Cereda M, Kayikci M et al.. Characterizing the RNA targets and position-dependent splicing regulation by TDP-43. Nat Neurosci. 2011; 14(4):452-58.
  • [4]Kawahara Y, Mieda-Sato A. TDP-43 promotes microRNA biogenesis as a component of the Drosha and Dicer complexes. Proc Natl Acad Sci U S A. 2012; 109(9):3347-52.
  • [5]Cohen TJ, Lee VM, Trojanowski JQ. TDP-43 functions and pathogenic mechanisms implicated in TDP-43 proteinopathies. Trends Mol Med. 2011; 17(11):659-67.
  • [6]Alami NH, Smith RB, Carrasco MA, Williams LA, Winborn CS, Han SS et al.. Axonal transport of TDP-43 mRNA granules is impaired by ALS-causing mutations. Neuron. 2014; 81(3):536-43.
  • [7]Freibaum BD, Chitta RK, High AA, Taylor JP. Global analysis of TDP-43 interacting proteins reveals strong association with RNA splicing and translation machinery. J Proteome Res. 2010; 9(2):1104-20.
  • [8]Ling SC, Albuquerque CP, Han JS, Lagier-Tourenne C, Tokunaga S, Zhou H et al.. ALS-associated mutations in TDP-43 increase its stability and promote TDP-43 complexes with FUS/TLS. Proc Natl Acad Sci U S A. 2010; 107(30):13318-23.
  • [9]Lattante S, Rouleau GA, Kabashi E. TARDBP and FUS mutations associated with amyotrophic lateral sclerosis: summary and update. Hum Mutat. 2013; 34(6):812-26.
  • [10]Pesiridis GS, Lee VM, Trojanowski JQ. Mutations in TDP-43 link glycine-rich domain functions to amyotrophic lateral sclerosis. Hum Mol Genet. 2009; 18(R2):R156-62.
  • [11]Gendron TF, Rademakers R, Petrucelli L. TARDBP mutation analysis in TDP-43 proteinopathies and deciphering the toxicity of mutant TDP-43. J Alzheimers Dis. 2013; 33 Suppl 1:S35-45.
  • [12]Arai T, Hasegawa M, Akiyama H, Ikeda K, Nonaka T, Mori H et al.. TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun. 2006; 351(3):602-11.
  • [13]Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT et al.. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science. 2006; 314(5796):130-3.
  • [14]Chen-Plotkin AS, Lee VM, Trojanowski JQ. TAR DNA-binding protein 43 in neurodegenerative disease. Nat Rev Neurol. 2010; 6(4):211-20.
  • [15]Arnold ES, Ling SC, Huelga SC, Lagier-Tourenne C, Polymenidou M, Ditsworth D et al.. ALS-linked TDP-43 mutations produce aberrant RNA splicing and adult-onset motor neuron disease without aggregation or loss of nuclear TDP-43. Proc Natl Acad Sci U S A. 2013; 110(8):E736-45.
  • [16]Ash PE, Zhang YJ, Roberts CM, Saldi T, Hutter H, Buratti E et al.. Neurotoxic effects of TDP-43 overexpression in C. elegans. Hum Mol Genet. 2010; 19(16):3206-18.
  • [17]Wegorzewska I, Bell S, Cairns NJ, Miller TM, Baloh RH. TDP-43 mutant transgenic mice develop features of ALS and frontotemporal lobar degeneration. Proc Natl Acad Sci U S A. 2009; 106(44):18809-14.
  • [18]Kabashi E, Lin L, Tradewell ML, Dion PA, Bercier V, Bourgouin P et al.. Gain and loss of function of ALS-related mutations of TARDBP (TDP-43) cause motor deficits in vivo. Hum Mol Genet. 2010; 19(4):671-83.
  • [19]Li Y, Ray P, Rao EJ, Shi C, Guo W, Chen X et al.. A Drosophila model for TDP-43 proteinopathy. Proc Natl Acad Sci U S A. 2010; 107(7):3169-74.
  • [20]Shan X, Chiang PM, Price DL, Wong PC. Altered distributions of Gemini of coiled bodies and mitochondria in motor neurons of TDP-43 transgenic mice. Proc Natl Acad Sci U S A. 2010; 107(37):16325-30.
  • [21]Wils H, Kleinberger G, Janssens J, Pereson S, Joris G, Cuijt I et al.. TDP-43 transgenic mice develop spastic paralysis and neuronal inclusions characteristic of ALS and frontotemporal lobar degeneration. Proc Natl Acad Sci U S A. 2010; 107(8):3858-63.
  • [22]Xu YF, Gendron TF, Zhang YJ, Lin WL, D’Alton S, Sheng H et al.. Wild-type human TDP-43 expression causes TDP-43 phosphorylation, mitochondrial aggregation, motor deficits, and early mortality in transgenic mice. J Neurosci. 2010; 30(32):10851-9.
  • [23]Swarup V, Phaneuf D, Dupre N, Petri S, Strong M, Kriz J et al.. Deregulation of TDP-43 in amyotrophic lateral sclerosis triggers nuclear factor kappaB-mediated pathogenic pathways. J Exp Med. 2011; 208(12):2429-47.
  • [24]Huang C, Tong J, Bi F, Zhou H, Xia XG. Mutant TDP-43 in motor neurons promotes the onset and progression of ALS in rats. J Clin Invest. 2012; 122(1):107-18.
  • [25]Avendano-Vazquez SE, Dhir A, Bembich S, Buratti E, Proudfoot N, Baralle FE. Autoregulation of TDP-43 mRNA levels involves interplay between transcription, splicing, and alternative polyA site selection. Genes Dev. 2012; 26(15):1679-84.
  • [26]Yang D, Wang CE, Zhao B, Li W, Ouyang Z, Liu Z et al.. Expression of Huntington’s disease protein results in apoptotic neurons in the brains of cloned transgenic pigs. Hum Mol Genet. 2010; 19(20):3983-94.
  • [27]Yang H, Wang G, Sun H, Shu R, Liu T, Wang CE et al.. Species-dependent neuropathology in transgenic SOD1 pigs. Cell Res. 2014; 24(4):464-81.
  • [28]Winton MJ, Igaz LM, Wong MM, Kwong LK, Trojanowski JQ, Lee VM. Disturbance of nuclear and cytoplasmic TAR DNA-binding protein (TDP-43) induces disease-like redistribution, sequestration, and aggregate formation. J Biol Chem. 2008; 283(19):13302-9.
  • [29]Ayala YM, De Conti L, Avendano-Vazquez SE, Dhir A, Romano M, D’Ambrogio A et al.. TDP-43 regulates its mRNA levels through a negative feedback loop. EMBO J. 2011; 30(2):277-88.
  • [30]Sumi H, Kato S, Mochimaru Y, Fujimura H, Etoh M, Sakoda S. Nuclear TAR DNA binding protein 43 expression in spinal cord neurons correlates with the clinical course in amyotrophic lateral sclerosis. J Neuropathol Exp Neurol. 2009; 68(1):37-47.
  • [31]Braak H, Ludolph A, Thal DR, Del Tredici K. Amyotrophic lateral sclerosis: dash-like accumulation of phosphorylated TDP-43 in somatodendritic and axonal compartments of somatomotor neurons of the lower brainstem and spinal cord. Acta Neuropathol. 2010; 120(1):67-74.
  • [32]Patton JG, Porro EB, Galceran J, Tempst P, Nadal-Ginard B. Cloning and characterization of PSF, a novel pre-mRNA splicing factor. Genes Dev. 1993; 7(3):393-406.
  • [33]Kaneko S, Rozenblatt-Rosen O, Meyerson M, Manley JL. The multifunctional protein p54nrb/PSF recruits the exonuclease XRN2 to facilitate pre-mRNA 3’ processing and transcription termination. Genes Dev. 2007; 21(14):1779-89.
  • [34]Tapia-Paez I, Tammimies K, Massinen S, Roy AL, Kere J. The complex of TFII-I, PARP1, and SFPQ proteins regulates the DYX1C1 gene implicated in neuronal migration and dyslexia. FASEB J. 2008; 22(8):3001-9.
  • [35]Kim KK, Kim YC, Adelstein RS, Kawamoto S. Fox-3 and PSF interact to activate neural cell-specific alternative splicing. Nucleic Acids Res. 2011; 39(8):3064-78.
  • [36]Kim SH, Shanware NP, Bowler MJ, Tibbetts RS. Amyotrophic lateral sclerosis-associated proteins TDP-43 and FUS/TLS function in a common biochemical complex to co-regulate HDAC6 mRNA. J Biol Chem. 2010; 285(44):34097-105.
  • [37]Honda D, Ishigaki S, Iguchi Y, Fujioka Y, Udagawa T, Masuda A et al.. The ALS/FTLD-related RNA-binding proteins TDP-43 and FUS have common downstream RNA targets in cortical neurons. FEBS Open Bio. 2013; 4:1-10.
  • [38]Amparan D, Avram D, Thomas CG, Lindahl MG, Yang J, Bajaj G et al.. Direct interaction of myosin regulatory light chain with the NMDA receptor. J Neurochem. 2005; 92(2):349-61.
  • [39]Kioussi C, Appu M, Lohr CV, Fischer KA, Bajaj G, Leid M et al.. Co-expression of myosin II regulatory light chain and the NMDAR1 subunit in neonatal and adult mouse brain. Brain Res Bull. 2007; 74(6):439-51.
  • [40]Bajaj G, Zhang Y, Schimerlik MI, Hau AM, Yang J, Filtz TM et al.. N-methyl-D-aspartate receptor subunits are non-myosin targets of myosin regulatory light chain. J Biol Chem. 2009; 284(2):1252-66.
  • [41]Wang A, Ma X, Conti MA, Liu C, Kawamoto S, Adelstein RS. Nonmuscle myosin II isoform and domain specificity during early mouse development. Proc Natl Acad Sci U S A. 2010; 107(33):14645-50.
  • [42]Tullio AN, Bridgman PC, Tresser NJ, Chan CC, Conti MA, Adelstein RS et al.. Structural abnormalities develop in the brain after ablation of the gene encoding nonmuscle myosin II-B heavy chain. J Comp Neurol. 2001; 433(1):62-74.
  • [43]Lee EB, Lee VM, Trojanowski JQ. Gains or losses: molecular mechanisms of TDP43-mediated neurodegeneration. Nat Rev Neurosci. 2012; 13(1):38-50.
  • [44]Xu ZS. Does a loss of TDP-43 function cause neurodegeneration? Mol Neurodegener. 2012; 7:27.
  • [45]Uchida A, Sasaguri H, Kimura N, Tajiri M, Ohkubo T, Ono F et al.. Non-human primate model of amyotrophic lateral sclerosis with cytoplasmic mislocalization of TDP-43. Brain. 2012; 135(Pt 3):833-46.
  • [46]Nishimura AL, Shum C, Scotter EL, Abdelgany A, Sardone V, Wright J et al.. Allele-specific knockdown of ALS-associated mutant TDP-43 in neural stem cells derived from induced pluripotent stem cells. PLoS One. 2014; 9(3):e91269.
  • [47]Serio A, Bilican B, Barmada SJ, Ando DM, Zhao C, Siller R et al.. Astrocyte pathology and the absence of non-cell autonomy in an induced pluripotent stem cell model of TDP-43 proteinopathy. Proc Natl Acad Sci U S A. 2013; 110(12):4697-702.
  • [48]Barmada SJ, Skibinski G, Korb E, Rao EJ, Wu JY, Finkbeiner S. Cytoplasmic mislocalization of TDP-43 is toxic to neurons and enhanced by a mutation associated with familial amyotrophic lateral sclerosis. J Neurosci. 2010; 30(2):639-49.
  • [49]Lagier-Tourenne C, Polymenidou M, Hutt KR, Vu AQ, Baughn M, Huelga SC et al.. Divergent roles of ALS-linked proteins FUS/TLS and TDP-43 intersect in processing long pre-mRNAs. Nat Neurosci. 2012; 15(11):1488-97.
  • [50]Barmada SJ, Serio A, Arjun A, Bilican B, Daub A, Ando DM et al.. Autophagy induction enhances TDP43 turnover and survival in neuronal ALS models. Nature Chem Biol. 2014; 10(8):677-685.
  • [51]Watanabe S, Kaneko K, Yamanaka K. Accelerated disease onset with stabilized familial amyotrophic lateral sclerosis (ALS)-linked mutant TDP-43 proteins. J Biol Chem. 2013; 288(5):3641-54.
  • [52]Igaz LM, Kwong LK, Lee EB, Chen-Plotkin A, Swanson E, Unger T et al.. Dysregulation of the ALS-associated gene TDP-43 leads to neuronal death and degeneration in mice. J Clin Invest. 2011; 121(2):726-38.
  • [53]Ma X, Kawamoto S, Hara Y, Adelstein RS. A point mutation in the motor domain of nonmuscle myosin II-B impairs migration of distinct groups of neurons. Mol Biol Cell. 2004; 15(6):2568-79.
  • [54]Tuzovic L, Yu L, Zeng W, Li X, Lu H, Lu HM et al.. A human de novo mutation in MYH10 phenocopies the loss of function mutation in mice. Rare Dis. 2013; 1:e26144.
  • [55]Kunde SA, Musante L, Grimme A, Fischer U, Muller E, Wanker EE et al.. The X-chromosome-linked intellectual disability protein PQBP1 is a component of neuronal RNA granules and regulates the appearance of stress granules. Hum Mol Genet. 2011; 20(24):4916-31.
  • [56]Yan S, Wang CE, Wei W, Gaertig MA, Lai L, Li S et al.. TDP-43 causes differential pathology in neuronal versus glial cells in the mouse brain. Hum Mol Genet. 2014; 23(10):2678-93.
  • [57]Weng L, Lin YF, Li AL, Wang CE, Yan S, Sun M et al.. Loss of Ahi1 affects early development by impairing BM88/Cend1-mediated neuronal differentiation. J Neurosci. 2013; 33(19):8172-84.
  文献评价指标  
  下载次数:1次 浏览次数:8次