期刊论文详细信息
Particle and Fibre Toxicology
Lack of population genetic structure and host specificity in the bat fly, Cyclopodia horsfieldi, across species of Pteropus bats in Southeast Asia
Rob DeSalle7  Peter Daszak5  Susan L Perkins7  Katharina Dittmar3  Don J Melnick2  Juan Carlos Morales4  Nancy B Simmons1  Carl W Dick6  Kevin J Olival2 
[1] Department of Mammalogy, American Museum of Natural History, New York, NY 10024, USA;Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY 10027, USA;Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY 14260, USA;Global Footprint Network, Oakland, CA 94607, USA;EcoHealth Alliance, New York, NY 10001, USA;Department of Zoology, Field Museum of Natural History, Chicago, IL 60605, USA;Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY 10024, USA
关键词: Phylogeography;    Pathogens;    Nycteribiidae;    Nipah virus;    Gene flow;    Emerging infectious disease;    Ectoparasite;    Flying fox;    Diptera;    Connectivity;    Bartonella;   
Others  :  825019
DOI  :  10.1186/1756-3305-6-231
 received in 2013-06-17, accepted in 2013-08-06,  发布年份 2013
PDF
【 摘 要 】

Background

Population-level studies of parasites have the potential to elucidate patterns of host movement and cross-species interactions that are not evident from host genealogy alone. Bat flies are obligate and generally host-specific blood-feeding parasites of bats. Old-World flies in the family Nycteribiidae are entirely wingless and depend on their hosts for long-distance dispersal; their population genetics has been unstudied to date.

Methods

We collected a total of 125 bat flies from three Pteropus species (Pteropus vampyrus, P. hypomelanus, and P. lylei) from eight localities in Malaysia, Cambodia, and Vietnam. We identified specimens morphologically and then sequenced three mitochondrial DNA gene fragments (CoI, CoII, cytB; 1744 basepairs total) from a subset of 45 bat flies. We measured genetic diversity, molecular variance, and population genetic subdivision (FST), and used phylogenetic and haplotype network analyses to quantify parasite genetic structure across host species and localities.

Results

All flies were identified as Cyclopodia horsfieldi with the exception of two individuals of Eucampsipoda sundaica. Low levels of population genetic structure were detected between populations of Cyclopodia horsfieldi from across a wide geographic range (~1000 km), and tests for isolation by distance were rejected. AMOVA results support a lack of geographic and host-specific population structure, with molecular variance primarily partitioned within populations. Pairwise FST values from flies collected from island populations of Pteropus hypomelanus in East and West Peninsular Malaysia supported predictions based on previous studies of host genetic structure.

Conclusions

The lack of population genetic structure and morphological variation observed in Cyclopodia horsfieldi is most likely due to frequent contact between flying fox species and subsequent high levels of parasite gene flow. Specifically, we suggest that Pteropus vampyrus may facilitate movement of bat flies between the three Pteropus species in the region. We demonstrate the utility of parasite genetics as an additional layer of information to measure host movement and interspecific host contact. These approaches may have wide implications for understanding zoonotic, epizootic, and enzootic disease dynamics. Bat flies may play a role as vectors of disease in bats, and their competence as vectors of bacterial and/or viral pathogens is in need of further investigation.

【 授权许可】

   
2013 Olival et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140713053249111.pdf 1347KB PDF download
Figure 7. 62KB Image download
Figure 6. 25KB Image download
Figure 5. 46KB Image download
Figure 4. 63KB Image download
Figure 3. 176KB Image download
Figure 2. 114KB Image download
Figure 1. 72KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Nieberding CM, Olivieri I: Parasites: proxies for host genealogy and ecology? Trends Ecol Evol 2007, 22(3):156-165.
  • [2]Poulin R: Evolutionary ecology of parasites. 2nd edition. Princeton, NJ: Princeton University Press; 2007.
  • [3]Dybdahl M, Lively C: The geography of coevolution: comparative population structures for a snail and its trematode parasite. Evolution 1996, 50:2264-2275.
  • [4]Light JE, Hafner MS: Cophylogeny and disparate rates of evolution in sympatric lineages of chewing lice on pocket gophers. Mol Phylogen Evol 2007, 45(3):997-1013.
  • [5]McCoy KD, Boulinier T, Tirard C: Comparative host-parasite population structures: disentangling prospecting and dispersal in the black-legged kittiwake Rissa tridactyla. Mol Ecol 2005, 14(9):2825-2838.
  • [6]Nieberding C, Morand S, Libois R, Michaux JR: A parasite reveals cryptic phylogeographic history of its host. Proc Royal Soc London Series B-Biol Sci 2004, 271(1557):2559-2568.
  • [7]Whiteman NK, Kimball RT, Parker PG: Co-phylogeography and comparative population genetics of the threatened Galapagos hawk and three ectoparasite species: ecology shapes population histories within parasite communities. Mol Ecol 2007, 16:4759-4773.
  • [8]Biek R, Drummond AJ, Poss M: A virus reveals population structure and recent demographic history of its carnivore host. Science 2006, 311(5760):538-541.
  • [9]Brant SV, Orti G: Evidence for gene flow in parasitic nematodes between two host species of shrews. Mol Ecol 2003, 12(10):2853-2859.
  • [10]Gomez-Diaz E, Gonzalez-Solis J, Peinado MA, Page RDM: Lack of host-dependent genetic structure in ectoparasites of Calonectris shearwaters. Mol Ecol 2007, 16(24):5204-5215.
  • [11]Nadler SA: Microevolution and the genetic-structure of parasite populations. J Parasitol 1995, 81(3):395-403.
  • [12]Nieberding C, Morand S, Libois R, Michaux JR: Parasites and the island syndrome: the colonization of the western Mediterranean islands by Heligmosomoides polygyrus (Dujardin, 1845). J Biogeogr 2006, 33(7):1212-1222.
  • [13]Bruyndonckx N, Biollaz F, Dubey S, Goudet J, Christe P: Mites as biological tags of their hosts. Mol Ecol 2010, 19(13):2770-2778.
  • [14]Dittmar K, Porter ML, Murray S, Whiting MF: Molecular phylogenetic analysis of nycteribiid and streblid bat flies (Diptera: Brachycera, Calyptratae): Implications for host associations and phylogeographic origins. Mol Phylogen Evol 2006, 38(1):155.
  • [15]Dick CW, Patterson BD: Bat flies -- obligate ectoparasites of bats. In Micromammals and Macroparasites: From evolutionary ecology to management. Edited by Morand S, Krasnov BR, Poulin R. New York: Springer; 2006:179-194.
  • [16]Theodor O: Revision of the genus Cyclopodia (Nycteribiidae, Diptera). Parasitology 1959, 49(1–2):242-308.
  • [17]Farafonova GV, Kruskop SV: Notes on the Nycteribiidae (Diptera) of Viet Nam. Dipterol Res 2001, 12(1):29-31.
  • [18]Dick CW: High host specificity of obligate ectoparasites. Ecol Entomol 2007, 32(5):446-450.
  • [19]Dick CW, Patterson BD: Against all odds: explaining high host specificity in dispersal-prone parasites. Int J Parasitol 2007, 37:871-876.
  • [20]Peterson BV, Durden LA, Keirans JE, Taylor PM: Some Ectoparasites of Bats from Halmahera Island. Indonesia. Entomol News 1990, 101(1):39-47.
  • [21]Marshall AG: The Ecology of Ectoparasitic Insects. London: Academic; 1981.
  • [22]Patterson BD, Ballard JWO, Wenzel RL: Distributional evidence for cospeciation between neotropical bats and their bat fly ectoparasites. Stud Neotrop Fauna Environ 1998, 33(2–3):76-84.
  • [23]ter Hofstede HM, Fenton MB, Whitaker JO: Host and host-site specificity of bat flies (Diptera: Streblidae and Nycteribiidae) on Neotropical bats (Chiroptera). Can J Zool-Revue Can De Zool 2004, 82(4):616-626.
  • [24]Ching LM, Marshall AG: The breeding biology of the bat-fly Eucampsipoda sundaicum Theodor, 1955 (Diptera: Nycteribiidae). Malay Nat J 1968, 21:171-180.
  • [25]Marshall AG: Life Cycle of Basilia hispida Theodor 1967 (Diptera-Nycteribiidae) in Malaysia. Parasitology 1970, 61:1-19.
  • [26]Kunz TH, Jones DP: Pteropus vampyrus. Mammalian Species 2000, 642:1-6.
  • [27]Koopman KF: Distributional patterns of Indo-Malayan bats (Mammalia: Chiroptera). Am Mus Novit 1989, 2942:1-20.
  • [28]Jones DP, Kunz TH: Pteropus hypomelanus. Mammalian Species 2000, 639:1-6.
  • [29]Corbet GB, Hill JE: The Mammals of the Indomalayan Region: A systematic review. London: Natural History Museum Publications Oxford University Press; 1992.
  • [30]Koopman KF: Chiroptera: systematics. Handbook of zoology: a natural history of the phyla of the animal kingdom. Volume 8. New York; 1994.
  • [31]Giannini N, Almeida FC, Simmons NB, Helgen KM: The systematic position of Pteropus leucopterus and its bearing on the monophyly and relationships of Pteropus (Chiroptera: Pteropodidae). Acta Chiropt 2008, 10(1):11-20.
  • [32]Petersen FT, Meier R, Kutty SN, Wiegmann BM: The phylogeny and evolution of host choice in the Hippoboscoidea (Diptera) as reconstructed using four molecular markers. Mol Phylogen Evol 2007, 45:111-122.
  • [33]Wilson GM, Byrd KS, Caire W, Bussche RAVD: Lack of Population Genetic Structure in the Bat Fly (Trichobius major) in Kansas, Oklahoma, and Texas based on DNA Sequence Data for the Cytochrome Oxidase I (COI) and NADH Dehydrogenase 4 (ND4) Genes. Proc Okla Acad Sci 2007, 87:31-36.
  • [34]Lack JB, Nichols RD, Wilson GM, Van Den Bussche RA: Genetic Signature of Reproductive Manipulation in the Phylogeography of the Bat Fly, Trichobius major. J Hered 2011, 102(6):705-718.
  • [35]Epstein JH, Zambriski JA, Rostal MK, Heard DJ, Daszak P: Comparison of Intravenous Medetomidine and Medetomidine/Ketamine for Immobilization of Free-Ranging Variable Flying Foxes (Pteropus hypomelanus). PLoS ONE 2011, 6(10):e25361.
  • [36]Dittmar K, Whiting MF: Genetic and phylogeographic structure of populations of Pulex simulans (Siphonaptera) in Peru inferred from two genes (CytB and CoII ). Parasitol Res 2003, 91:55-59.
  • [37]MacDonald C, Brookfield JFY: Intraspecific molecular variation in the seaweed fly Coelopa frigida consistent with behavioural distinctness of British and Swedish populations. Mol Ecol 2002, 11:1637-1646.
  • [38]Tothova A, Bryja J, Bejdak P, Vanhara J: Molecular markers used in phylogenetic studies of Diptera with a methodological overview. Acta Univ Carol Biol 2006, 50(1–2):125-133.
  • [39]Baudry E, Bartos J, Emerson K, Whitworth T, Werren JH: Wolbachia and genetic variability in the birdnest blowfly Protocalliphora sialia. Mol Ecol 2003, 12(7):1843-1854.
  • [40]Maekawa K, Kitade O, Matsumoto T: Molecular phylogeny of orthopteroid insects based on the mitochondrial cytochrome oxidase II gene. Zool Sci 1999, 16:175-184.
  • [41]Hebert PDN, Penton EH, Burns JM, Janzen DH, Hallwachs W: Ten species in one: DNA barcoding reveals cryptic species in the newtropical skipper butterfly Astraptes fulgerator. Proc Natl Acad Sci U S A 2004, 101:14812-14817.
  • [42]Oliveira MT, Da Rosa AC, Azeredo-Espin AML, Lessinger AC: Improving access to the control region and tRNA gene clusters of Dipteran mitochondrial DNA. J Med Entomol 2006, 43(3):636-639.
  • [43]Katoh K, Kuma K, Toh H, Miyata T: MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res 2005, 33(2):511-518.
  • [44]Maddison DR, Maddison WP: MACCLADE 4: Analysis of Phylogeny and Character Evolution, Version 4.08. Sunderland, Massachusetts: Sinauer Associates; 2006.
  • [45]Swofford DL: PAUP*: Phylogenetic Analysis Using Parsimony (*and other methods). Sunderland, MA: Sinauer Associates; 2000.
  • [46]Stamatakis A: RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006, 22(21):2688-2690.
  • [47]Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP: MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 2012, 61(3):539-542.
  • [48]Felsenstein J: Confidence-Limits on Phylogenies - an Approach Using the Bootstrap. Evolution 1985, 39(4):783-791.
  • [49]Posada D, Crandall KA: Modeltest: testing the model of DNA substitution. Bioinformatics 1998, 14(9):817-818.
  • [50]Nylander JA, Wilgenbusch JC, Warren DL, Swofford DL: AWTY (are we there yet?): a system for graphical exploration of MCMC convergence in Bayesian phylogenetics. Bioinformatics 2008, 24(4):581-583.
  • [51]Clement M, Posada D, Crandall KA: TCS: a computer program to estimate gene genealogies. Mol Ecol 2000, 9(10):1657-1660.
  • [52]Nei M: Molecular evolutionary genetics. New York: Columbia University Press; 1987.
  • [53]Rozas J, Sanchez-DelBarrio JC, Messeguer X, Rozas R: DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 2003, 19(18):2496-2497.
  • [54]Slatkin M: Inbreeding Coefficients and Coalescence Times. Genet Res 1991, 58(2):167-175.
  • [55]Mantel N: The detection of disease clustering and a generalized regression approach. Cancer Res 1967, 27:209-220.
  • [56]Jombart T: adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 2008, 24(11):1403-1405.
  • [57]Excoffier L, Smouse PE, Quattro JM: Analysis Of Molecular Variance Inferred From Metric Distances Among DNA Haplotypes - Application To Human Mitochondrial-DNA Restriction Data. Genetics 1992, 131(2):479-491.
  • [58]Schneider S, Roessli D, Excoffier L: Arlequin: A software for population genetics data analysis. 20th edition. University of Geneva: Department of Anthropology Genetics and Biometry Lab; 2000.
  • [59]Theodor O: On the genus Eucampsipoda, Kol and Dipseliopoda, n.g. (Nycteribiidae, Diptera). Parasitology 1955, 45:195-229.
  • [60]Domrow R: New and little known Laelaptidae, Trombiculidae and Listrophoridae (Acarina) from Australasian mammals. Proc Linnean Soc NSW 1961, 86:60-95.
  • [61]Valim MP, Gazeta GS: Phoretic association of the mites Myialges anchora Sergent & Trouessart (Acaridida, Epidermoptidae) and Ornithocheyletia hallae smiley (Actinedida, Cheyletiellidae) with Pseudolynchia canariensis (Macquart) (Diptera, Hippoboscidae). Rev Bras Entomol 2007, 51:518-519.
  • [62]Asbakk K: Mites (Acari) on mosquitoes in Finnmark, northern Norway. Fauna (Oslo) 2005, 58(2):50-53.
  • [63]Macchioni F, Magi M, Mancianti F, Perrucci S: Phoretic association of mites and mallophaga with the pigeon fly Pseudolynchia canariensis. Parasite-J De La Soc Fr De Parasitol 2005, 12(3):277-279.
  • [64]Chen B, Harbach RE, Walton C, He ZB, Zhong DB, Yan GY, Butlin RK: Population genetics of the malaria vector Anopheles aconitus in China and Southeast Asia. Infect Genet Evol 2012, 12(8):1958-1967.
  • [65]Li Y, Wu Y, Chen H, Wu J, Li Z: Population structure and colonization of Bactrocera dorsalis (Diptera: Tephritidae) in China, inferred from mtDNA COI sequences. J Appl Entomol 2012, 136(4):241-251.
  • [66]Ruiz-Arce R, Barr NB, Owen CL, Thomas DB, McPheron BA: Phylogeography of Anastrepha obliqua Inferred With mtDNA Sequencing. J Econ Entomol 2012, 105(6):2147-2160.
  • [67]Cha SY, Yoon HJ, Lee EM, Yoon MH, Hwang JS, Jin BR, Han YS, Kim I: The complete nucleotide sequence and gene organization of the mitochondrial genome of the bumblebee, Bombus ignitus (Hymenoptera : Apidae). Gene 2007, 392(1–2):206-220.
  • [68]Shao R, Barker SC: Mitochondrial genomes of parasitic arthropods: implications for studies of population genetics and evolution. Parasitology 2007, 134:153-167.
  • [69]Olival KJ: Population genetic structure and phylogeography of Southeast Asian flying foxes: implications for conservation and disease ecology. New York: Columbia University; 2008.
  • [70]Dick CW, Patterson BD: An excess of males: skewed sex ratios in bat flies (Diptera : Streblidae). Evol Ecol 2008, 22(6):757-769.
  • [71]Dittmar K, Morse S, Gruwell M, Mayberry J, DiBlasi E: Spatial and temporal complexities of reproductive behavior and sex ratios: a case from parasitic insects. PLoS ONE 2011, 6(5):e19438.
  • [72]Overal WL: Host-relations of the Batfly Megistopoda aranea (Diptera: Streblidae) in Panama. Univ Kansas Sci Bull 1980, 52:1-20.
  • [73]Zabat AG, Eduardo SL: Some Ectoparasites of the Common Rousette Bat (Rousettus amplexicaudatus Geofroy, 1810) (Mammalia: Chiroptera: Pteropodidae) from Colonies in Batangas and Rizal, Philippines. Philipp J Vet Med 2011, 48(1):53-56.
  • [74]Epstein JH, Olival KJ, Pulliam JRC, Smith C, Westrum J, Hughes T, Dobson AP, Zubaid A, Rahman SA, Basir MM, et al.: Pteropus vampyrus, a hunted migratory species with a multinational home-range and a need for regional management. J Appl Ecol 2009, 46(5):991-1002.
  • [75]Hartl DL, Clark AG: Principles of Population Genetics. Sunderland, Massachusetts: Sinauer Associates, Inc.; 1997.
  • [76]Hasan AU, Suguri S, Fujimoto C, Itaki RL, Harada M, Kawabata M, Bugoro H, Albino B, Tsukahara T, Hombhanje F, et al.: Phylogeography and dispersion pattern of Anopheles farauti senso stricto mosquitoes in Melanesia. Mol Phylogen Evol 2008, 46(2):792-800.
  • [77]Hurst GDD, Jiggins FM: Problems with mitochondrial DNA as a marker in population, phylogeographic and phylogenetic studies: the effects of inherited symbionts. Proc Royal Soc B-Biol Sci 2005, 272(1572):1525-1534.
  • [78]Charlat S, Hurst GDD, Mercot H: Evolutionary consequences of Wolbachia infections. Trends Genet 2003, 19(4):217-223.
  • [79]Xiao JH, Wang NX, Murphy RW, Cook J, Jia LY, Huang DW: Wolbachia infection and dramatic intraspecific mitochondrial dna divergence in a fig wasp. Evolution 2012, 66(6):1907-1916.
  • [80]Morse SF, Dick CW, Patterson BP, Dittmar K: Some like it hot: Evolution and ecology of novel endosymbionts in bat flies of cave roosting bats (Hippoboscoidea, Nycterophiliinae). Appl Environ Microbiol 2012, 78:8639-8649.
  • [81]Hosokawa T, Nikoh N, Koga R, Sato M, Tanahashi M, Meng XY, Fukatsu T: Reductive genome evolution, host-symbiont co-speciation and uterine transmission of endosymbiotic bacteria in bat flies. Isme Journal 2012, 6(3):577-587.
  • [82]Morse SF, Bush SE, Patterson BD, Dick CW, Gruwell ME, Dittmar K: Evolution, Multiple Acquisition, and Localization of Endosymbionts in Bat Flies (Diptera: Hippoboscoidea: Streblidae and Nycteribiidae). Appl Environ Microbiol 2013, 79(9):2952-2961.
  • [83]Graham RI, Wilson K: Male-killing Wolbachia and mitochondrial selective sweep in a migratory African insect. BMC Evol Biol 2012, 12:204. BioMed Central Full Text
  • [84]Frankham R, Lees K, Montgomery M: Do population size bottlenecks reduce evolutionary potential? Anim Conserv 1999, 2:255-260.
  • [85]Olival KJ, Epstein JH, Wang LF, Field HE, Daszak P: Are bats unique viral reservoirs? In New Directions in Conservation Medicine: Applied Cases of Ecological Health. 2nd edition. Edited by Aguirre AA, Ostfeld RS, Daszak P. Oxford: Oxford University Press; 2012:195-212.
  • [86]Daszak P, Plowright R, Epstein JH, Pulliam JH, Abdul Rahman S, Field HE, Smith CS, Olival KJ, Luby S, Halpin K, et al.: The emergence of Nipah and Hendra virus: pathogen dynamics across a wildlife-livestock-human continuum. In Disease Ecology: Community structure and pathogen dynamics. Edited by Collinge S, Ray C. Oxford: Oxford University Press; 2006:188-203.
  • [87]Olival KJ, Daszak P: The ecology of emerging neurotropic viruses. J Neurovirol 2005, 11:440-445.
  • [88]Chua KB, Bellini WJ, Rota PA, Harcourt BH, Tamin A, Lam SK, Ksiazek TG, Rollin PE, Zaki SR, Sheih WJ, et al.: Nipah virus: a recently emergent deadly paramyxovirus. Science 2000, 288:1432-1435.
  • [89]Luby SP, Hossain MJ, Gurley ES, Ahmed BN, Banu S, Khan SU, Homaira N, Rota PA, Rollin PE, Comer JA, et al.: Recurrent zoonotic transmission of nipah virus into humans, Bangladesh, 2001–2007. Emerging Infect Dis 2009, 15(8):1229-1235.
  • [90]Lo MK, Lowe L, Hummel KB, Sazzad HMS, Gurley ES, Hossain MJ, Luby SP, Miller DM, Comer JA, Rollin PE, et al.: Characterization of Nipah Virus from Outbreaks in Bangladesh, 2008–2010. Emerging Infect Dis 2012, 18(2):248-255.
  • [91]WHO: Nipah virus. http://www.who.int/mediacentre/factsheets/fs262/en/2013 webcite
  • [92]Chua KB, Koh CL, Hooi PS, Wee KF, Khong JH, Chua BH, Chan YP, Lim ME, Lam SK: Isolation of Nipah virus from Malaysian Island flying-foxes. Microb Infect 2002, 4:145-151.
  • [93]Rahman SA, Hassan SS, Olival KJ, Mohamed M, Chang L-Y, Hassan L, Suri AS, Saad NM, Shohaimi SA, Mamat ZC, et al.: Characterization of Nipah Virus from Naturally Infected Pteropus vampyrus Bats, Malaysia. Emerging Infectious Disease 2010, 16(12):1990-1993.
  • [94]Wacharapluesadee S, Lumlertdacha B, Boongird K, Wanghongsa S, Chanhome L, Rollin P, Stockton P, Rupprecht CE, Ksiazek TG, Hemachudha T: Bat Nipah Virus, Thailand. Emerging Infect Dis 2005, 11(12):1949-1951.
  • [95]Hodgkison R, Balding ST, Zubaid A, Kunz TH: Temporal variation in the relative abundance of fruit bats (Megachiroptera : Pteropodidae) in relation to the availability of food in a lowland malaysian rain forest. Biotropica 2004, 36(4):522-533.
  • [96]Khan MSU, Hossain J, Gurley ES, Nahar N, Sultana R, Luby SP: Use of Infrared Camera to Understand Bats’ Access to Date Palm Sap: Implications for Preventing Nipah Virus Transmission. Ecohealth 2011, 7(4):517-525.
  • [97]Yob JM, Field H, Rashdi AM, Morrissy C, Heide B, Rosta P, Adzhar A, White J, Daniels P, Jamaluddin A, et al.: Nipah virus infection in bats (Order Chiroptera) in Peninsular Malaysia. Emerging Infect Dis 2001, 7(3):439-441.
  • [98]Plowright RK, Field HE, Smith C, Divljan A, Palmer C, Tabor G, Daszak P, Foley JE: Reproduction and nutritional stress are risk factors for Hendra virus infection in little red flying foxes (Pteropus scapulatus). Proceedings of the Royal Society B-Biological Sciences 2008, 275:861-869.
  • [99]Halpin K, Hyatt AD, Plowright RK, Epstein JH, Daszak P, Field HE, Wang LF, Daniels PW, Henipavirus Ecology Res G: Emerging viruses: Coming in on a wrinkled wing and a prayer. Clin Infect Dis 2007, 44(5):711-717.
  • [100]Breed A, Field H, Plowright R: Volant viruses: a concern to bats, humans and other animals. Microbiology Australia 2005, 59-62.
  • [101]Rahman SA, Hassan L, Epstein JH, Mamat ZC, Yatim AM, Hassan SS, Field HE, Hughes T, Westrum J, Naim MS, et al.: Risk factors for Nipah virus infection among pteropid bats, Peninsular Malaysia. Emerging Infect Dis 2013, 19:51. Internet
  • [102]Epstein JH, Prakash V, Smith CS, Daszak P, McLaughlin AB, Meehan G, Field HE, Cunningham AA: Henipavirus infection in fruit bats (Pteropus giganteus), India. Emerging Infect Dis 2008, 14(8):1309-1311.
  • [103]Garnham PCC: Hepatocystis of bats and squirrels. In Malaria Parasites and other Haemosporidia. Oxford: Blackwell Scientific; 1966.
  • [104]Olival KJ, Stiner EO, Perkins SL: Detection of Hepatocystis sp. in Southeast Asian Flying Foxes (Pteropodidae) using Microscopic and Molecular Methods. J Parasitol 2007, 93(6):1538-1540.
  • [105]Bearup AJ, Lawrence JJ: A search for the vector of Plasmodium pteropi Breinl. Proceedings of the Linnean Society NSW 1947, 71:197-200.
  • [106]Garnham PCC: An Attempt To Find The Vector Of Hepatocystis (=Plasmodium) Kochi (Levaditi And Schoen). Exp Parasitol 1951, 1(1):94-107.
  • [107]McGhee RB: The occurrence of bat malaria in the New Hebrides and Phillipine Islands. J Parasitol 1949, 35(5):545.
  • [108]Garnham PC, Ikata M, Minter DM, Heisch RB, Phipps JD: Culicoides Adersi Ingram And Macfie, 1923, A Presumed Vector Of Hepatocystis (=Plasmodium) Kochi (Laveran,1899). Nature 1961, 190(477):739.
  • [109]Gardner RA: A malarial parasite of bats. Inst Terrestrial Ecol Ann Rep 1985, 1984:125-126.
  • [110]Morse SF, Olival KJ, Kosoy M, Billeter SA, Patterson BD, Dick CW, Dittmar K: Global distribution and genetic diversity of Bartonella in bat flies (Hippoboscoidea, Streblidae, Nycteribiidae). Infect Genet Evol 2012, 12(8):1717-1723.
  • [111]Bai Y, Kosoy M, Recuenco S, Alvarez D, Moran D, Turmelle A, Ellison J, Garcia DL, Estevez A, Lindblade K, et al.: Bartonella spp. in Bats, Guatemala. Emerging Infect Dis 2011, 17(7):1269-1272.
  文献评价指标  
  下载次数:66次 浏览次数:19次