期刊论文详细信息
Radiation Oncology
Increased SHP-1 expression results in radioresistance, inhibition of cellular senescence, and cell cycle redistribution in nasopharyngeal carcinoma cells
Gang Peng2  Gang Wu2  Qian Ding2  Zhenwei Zou2  Xiaofen Pan1  Ziyi Sun2 
[1] Cancer center, Affliated Hospital of Guangdong Medical College, Zhanjiang 524001, Guangdong Province, China;Cancer Center, Union hosipital, Wuhan 430022, Hubei Province, China
关键词: Rb;    p16;    Cell cycle distribution;    Cellular senescence;    SHP-1;    Nasopharyngeal carcinoma;   
Others  :  1228493
DOI  :  10.1186/s13014-015-0445-1
 received in 2015-03-02, accepted in 2015-06-23,  发布年份 2015
PDF
【 摘 要 】

Background

Radioresistance is the main limit to the efficacy of radiotherapy in nasopharyngeal carcinoma (NPC). SHP-1 is involved in cancer progression, but its role in radioresistance and senescence of NPC is not well understood. This study aimed to assess the role of SHP-1 in the radioresistance and senescence of NPC cells.

Methods

SHP-1 was knocked-down and overexpressed in CNE-1 and CNE-2 cells using lentiviruses. Cells were irradiated to observe their radiosensitivity by colony forming assay. BrdU incorporation assay and flow cytometry were used to monitor cell cycle. A β-galactosidase assay was used to assess senescence. Western blot was used to assess SHP-1, p21, p53, pRb, Rb, H3K9Me3, HP1γ, CDK4, cyclin D1, cyclin E, and p16 protein expressions.

Results

Compared with CNE-1-scramble shRNA cells, SHP-1 downregulation resulted in increased senescence (+107 %, P < 0.001), increased radiosensitivity, higher proportion of cells in G0/G1 (+33 %, P < 0.001), decreased expressions of CDK4 (−44 %, P < 0.001), cyclin D1 (−41 %, P = 0.001), cyclin E (−97 %, P < 0.001), Rb (−79 %, P < 0.001), and pRb (−76 %, P = 0.001), and increased expression of p16 (+120 %, P = 0.02). Furthermore, SHP-1 overexpression resulted in radioresistance, inhibition of cellular senescence, and cell cycle arrest in the S phase. Levels of p53 and p21 were unchanged in both cell lines (all P > 0.05).

Conclusion

SHP-1 has a critical role in radioresistance, cell cycle progression, and senescence of NPC cells. Down-regulating SHP-1 may be a promising therapeutic approach for treating patients with NPC.

【 授权许可】

   
2015 Sun et al.

【 预 览 】
附件列表
Files Size Format View
20151016082443982.pdf 3338KB PDF download
Fig. 5. 50KB Image download
Fig. 4. 81KB Image download
Fig. 3. 86KB Image download
Fig. 2. 46KB Image download
Fig. 1. 83KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

【 参考文献 】
  • [1]Wei WI, Sham JS. Nasopharyngeal carcinoma. Lancet. 2005; 365:2041-54.
  • [2]Anantharaman D, Marron M, Lagiou P, Samoli E, Ahrens W, Pohlabeln H et al.. Population attributable risk of tobacco and alcohol for upper aerodigestive tract cancer. Oral Oncol. 2011; 47:725-31.
  • [3]Freedman ND, Abnet CC, Leitzmann MF, Hollenbeck AR, Schatzkin A. Prospective investigation of the cigarette smoking-head and neck cancer association by sex. Cancer. 2007; 110:1593-601.
  • [4]Chan AT, Gregoire V, Lefebvre JL, Licitra L, Hui EP, Leung SF et al.. Nasopharyngeal cancer: EHNS-ESMO-ESTRO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2012; 23 Suppl 7:vii83-5.
  • [5]Chien YC, Chen JY, Liu MY, Yang HI, Hsu MM, Chen CJ et al.. Serologic markers of Epstein-Barr virus infection and nasopharyngeal carcinoma in Taiwanese men. N Engl J Med. 2001; 345:1877-82.
  • [6]Mork J, Lie AK, Glattre E, Hallmans G, Jellum E, Koskela P et al.. Human papillomavirus infection as a risk factor for squamous-cell carcinoma of the head and neck. N Engl J Med. 2001; 344:1125-31.
  • [7]Medow MA, Weed HG, Schuller DE. Simple predictors of survival in head and neck squamous cell carcinoma. Arch Otolaryngol Head Neck Surg. 2002; 128:1282-6.
  • [8]Fang FM, Chien CY, Tsai WL, Chen HC, Hsu HC, Lui CC et al.. Quality of life and survival outcome for patients with nasopharyngeal carcinoma receiving three-dimensional conformal radiotherapy vs. intensity-modulated radiotherapy-a longitudinal study. Int J Radiat Oncol Biol Phys. 2008; 72:356-64.
  • [9]Yeh SA, Tang Y, Lui CC, Huang YJ, Huang EY. Treatment outcomes and late complications of 849 patients with nasopharyngeal carcinoma treated with radiotherapy alone. Int J Radiat Oncol Biol Phys. 2005; 62:672-9.
  • [10]Feng XP, Yi H, Li MY, Li XH, Yi B, Zhang PF et al.. Identification of biomarkers for predicting nasopharyngeal carcinoma response to radiotherapy by proteomics. Cancer Res. 2010; 70:3450-62.
  • [11]Chang JT, Chan SH, Lin CY, Lin TY, Wang HM, Liao CT et al.. Differentially expressed genes in radioresistant nasopharyngeal cancer cells: gp96 and GDF15. Mol Cancer Ther. 2007; 6:2271-9.
  • [12]Qu C, Liang Z, Huang J, Zhao R, Su C, Wang S et al.. MiR-205 determines the radioresistance of human nasopharyngeal carcinoma by directly targeting PTEN. Cell Cycle. 2012; 11:785-96.
  • [13]Lorenz U. SHP-1 and SHP-2 in T cells: two phosphatases functioning at many levels. Immunol Rev. 2009; 228:342-59.
  • [14]Wu C, Sun M, Liu L, Zhou GW. The function of the protein tyrosine phosphatase SHP-1 in cancer. Gene. 2003; 306:1-12.
  • [15]Evren S, Wan S, Ma XZ, Fahim S, Mody N, Sakac D et al.. Characterization of SHP-1 protein tyrosine phosphatase transcripts, protein isoforms and phosphatase activity in epithelial cancer cells. Genomics. 2013; 102:491-9.
  • [16]Amin S, Kumar A, Nilchi L, Wright K, Kozlowski M. Breast cancer cells proliferation is regulated by tyrosine phosphatase SHP1 through c-jun N-terminal kinase and cooperative induction of RFX-1 and AP-4 transcription factors. Mol Cancer Res. 2011; 9:1112-25.
  • [17]Sharpless NE, DePinho RA. Cancer: crime and punishment. Nature. 2005; 436:636-7.
  • [18]Cairney CJ, Bilsland AE, Evans TR, Roffey J, Bennett DC, Narita M et al.. Cancer cell senescence: a new frontier in drug development. Drug Discov Today. 2012; 17:269-76.
  • [19]Campisi J. Aging, cellular senescence, and cancer. Annu Rev Physiol. 2013; 75:685-705.
  • [20]Reinhardt HC, Schumacher B. The p53 network: cellular and systemic DNA damage responses in aging and cancer. Trends Genet. 2012; 28:128-36.
  • [21]Purvis JE, Karhohs KW, Mock C, Batchelor E, Loewer A, Lahav G. p53 dynamics control cell fate. Science. 2012; 336:1440-4.
  • [22]Bian Y, Hall B, Sun ZJ, Molinolo A, Chen W, Gutkind JS et al.. Loss of TGF-beta signaling and PTEN promotes head and neck squamous cell carcinoma through cellular senescence evasion and cancer-related inflammation. Oncogene. 2012; 31:3322-32.
  • [23]Peng G, Cao RB, Li YH, Zou ZW, Huang J, Ding Q. Alterations of cell cycle control proteins SHP1/2, p16, CDK4 and cyclin D1 in radioresistant nasopharyngeal carcinoma cells. Mol Med Rep. 2014; 10:1709-16.
  • [24]Hwang CF, Cho CL, Huang CC, Wang JS, Shih YL, Su CY et al.. Loss of cyclin D1 and p16 expression correlates with local recurrence in nasopharyngeal carcinoma following radiotherapy. Ann Oncol. 2002; 13:1246-51.
  • [25]Zeng Y. Establishment of an epitheloid cell line and a fusiform cell line from a patient with nasopharyngeal carcinoma. Sci Sin. 1978; 21:127-34.
  • [26]Gu S, Tang W, Zeng Y, Zhao M. An epithelial cell line established from poorly differentiated nasopharyngeal carcinoma. Chin J Cancer. 1983; 2:70-6.
  • [27]He YX, Zhong PP, Yan SS, Liu L, Shi HL, Zeng MS et al.. DNA-dependent protein kinase activity and radiosensitivity of nasopharyngeal carcinoma cell lines CNE1/CNE2. Sheng Li Xue Bao. 2007; 59:524-33.
  • [28]Wang HM, Wu XY, Xia YF, Qian JY. Expression of ATM protein in nasopharyngeal carcinoma cell lines with different radiosensitivity. Ai Zheng. 2003; 22:579-81.
  • [29]Fan LC, Teng HW, Shiau CW, Lin H, Hung MH, Chen YL et al.. SHP-1 is a target of regorafenib in colorectal cancer. Oncotarget. 2014; 5:6243-51.
  • [30]Li XN, Shu Q, Su JM, Perlaky L, Blaney SM, Lau CC. Valproic acid induces growth arrest, apoptosis, and senescence in medulloblastomas by increasing histone hyperacetylation and regulating expression of p21Cip1, CDK4, and CMYC. Mol Cancer Ther. 2005; 4:1912-22.
  • [31]Collado M, Gil J, Efeyan A, Guerra C, Schuhmacher AJ, Barradas M et al.. Tumour biology: senescence in premalignant tumours. Nature. 2005; 436:642.
  • [32]Maehara K, Yamakoshi K, Ohtani N, Kubo Y, Takahashi A, Arase S et al.. Reduction of total E2F/DP activity induces senescence-like cell cycle arrest in cancer cells lacking functional pRB and p53. J Cell Biol. 2005; 168:553-60.
  • [33]Narita M, Narita M, Krizhanovsky V, Nunez S, Chicas A, Hearn SA et al.. A novel role for high-mobility group a proteins in cellular senescence and heterochromatin formation. Cell. 2006; 126:503-14.
  • [34]Ely S, Di Liberto M, Niesvizky R, Baughn LB, Cho HJ, Hatada EN et al.. Mutually exclusive cyclin-dependent kinase 4/cyclin D1 and cyclin-dependent kinase 6/cyclin D2 pairing inactivates retinoblastoma protein and promotes cell cycle dysregulation in multiple myeloma. Cancer Res. 2005; 65:11345-53.
  • [35]Cho KA, Ryu SJ, Oh YS, Park JH, Lee JW, Kim HP et al.. Morphological adjustment of senescent cells by modulating caveolin-1 status. J Biol Chem. 2004; 279:42270-8.
  • [36]Narayanan BA, Geoffroy O, Willingham MC, Re GG, Nixon DW. p53/p21(WAF1/CIP1) expression and its possible role in G1 arrest and apoptosis in ellagic acid treated cancer cells. Cancer Lett. 1999; 136:215-21.
  文献评价指标  
  下载次数:0次 浏览次数:7次