期刊论文详细信息
Molecular Neurodegeneration
Expression of Fused in sarcoma mutations in mice recapitulates the neuropathology of FUS proteinopathies and provides insight into disease pathogenesis
Thomas Kukar2  Dennis W Dickson4  Rosa Rademakers4  Pritam Das4  Todd Golde3  Jannet Kocerha1  Carolina Ceballos-Diaz3  Georgia Taylor2  Mariely DeJesus-Hernandez4  Qiudong Deng2  Christophe Verbeeck4 
[1] Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA;Department of Pharmacology and Neurology, Emory University School of Medicine, Atlanta, GA, USA;Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA;Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
关键词: RNA dysfunction;    Stress granules;    PABP-1;    α-internexin;    p62/SQSTM1;    Ubiquitin;    Neuronal cytoplasmic inclusions;    Adeno-associated virus;    Transgenic mouse models;    Fused in sarcoma proteinopathies;    Frontotemporal lobar degeneration;    Amyotrophic lateral sclerosis;   
Others  :  863761
DOI  :  10.1186/1750-1326-7-53
 received in 2012-06-07, accepted in 2012-09-27,  发布年份 2012
PDF
【 摘 要 】

Background

Mutations in the gene encoding the RNA-binding protein fused in sarcoma (FUS) can cause familial and sporadic amyotrophic lateral sclerosis (ALS) and rarely frontotemproal dementia (FTD). FUS accumulates in neuronal cytoplasmic inclusions (NCIs) in ALS patients with FUS mutations. FUS is also a major pathologic marker for a group of less common forms of frontotemporal lobar degeneration (FTLD), which includes atypical FTLD with ubiquitinated inclusions (aFTLD-U), neuronal intermediate filament inclusion disease (NIFID) and basophilic inclusion body disease (BIBD). These diseases are now called FUS proteinopathies, because they share this disease marker. It is unknown how FUS mutations cause disease and the role of FUS in FTD-FUS cases, which do not have FUS mutations. In this paper we report the development of somatic brain transgenic (SBT) mice using recombinant adeno-associated virus (rAAV) to investigate how FUS mutations lead to neurodegeneration.

Results

We compared SBT mice expressing wild-type human FUS (FUSWT), and two ALS-linked mutations: FUSR521C and FUSΔ14, which lacks the nuclear localization signal. Both FUS mutants accumulated in the cytoplasm relative to FUSWT. The degree of this shift correlated with the severity of the FUS mutation as reflected by disease onset in humans. Mice expressing the most aggressive mutation, FUSΔ14, recapitulated many aspects of FUS proteinopathies, including insoluble FUS, basophilic and eosiniphilic NCIs, and other pathologic markers, including ubiquitin, p62/SQSTM1, α-internexin, and the poly-adenylate(A)-binding protein 1 (PABP-1). However, TDP-43 did not localize to inclusions.

Conclusions

Our data supports the hypothesis that ALS or FTD-linked FUS mutations cause neurodegeneration by increasing cyotplasmic FUS. Accumulation of FUS in the cytoplasm may retain RNA targets and recruit additional RNA-binding proteins, such as PABP-1, into stress-granule like aggregates that coalesce into permanent inclusions that could negatively affect RNA metabolism. Identification of mutations in other genes that cause ALS/FTD, such as C9ORF72, sentaxin, and angiogenin, lends support to the idea that defective RNA metabolism is a critical pathogenic pathway. The SBT FUS mice described here will provide a valuable platform for dissecting the pathogenic mechanism of FUS mutations, define the relationship between FTD and ALS-FUS, and help identify therapeutic targets that are desperately needed for these devastating neurodegenerative disorders.

【 授权许可】

   
2012 Verbeeck et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140725060314661.pdf 2898KB PDF download
123KB Image download
92KB Image download
146KB Image download
111KB Image download
126KB Image download
148KB Image download
【 图 表 】

【 参考文献 】
  • [1]Vance C, Rogelj B, Hortobagyi T, De Vos KJ, Nishimura AL, Sreedharan J, Hu X, Smith B, Ruddy D, Wright P, et al.: Mutations in FUS, an RNA Processing Protein, Cause Familial Amyotrophic Lateral Sclerosis Type 6. Science 2009, 323:1208-1211.
  • [2]Kwiatkowski TJ, Bosco DA, LeClerc AL, Tamrazian E, Vanderburg CR, Russ C, Davis A, Gilchrist J, Kasarskis EJ, Munsat T, et al.: Mutations in the FUS/TLS Gene on Chromosome 16 Cause Familial Amyotrophic Lateral Sclerosis. Science 2009, 323:1205-1208.
  • [3]Ticozzi N, Tiloca C, Morelli C, Colombrita C, Poletti B, Doretti A, Maderna L, Messina S, Ratti A, Silani V: Genetics of Familial Amyotrophic Lateral Sclerosis. 2011.
  • [4]Kovar H, Dr J, Mr H: The Two Faces of the FUS/EWS/TAF15 Protein Family. Sarcoma 2011, 2011:837474.
  • [5]Law WJ, Cann KL, Hicks GG: TLS, EWS and TAF15: a model for transcriptional integration of gene expression. Brief Funct Genomic Proteomic 2006, 5:8-14.
  • [6]Lagier-Tourenne C, Cleveland DW: Rethinking ALS: The FUS about TDP-43. Cell 2009, 136:1001-1004.
  • [7]Zakaryan RP, Gehring H: Identification and Characterization of the Nuclear Localization/Retention Signal in the EWS Proto-oncoprotein. J Mol Biol 2006, 363:27-38.
  • [8]Andersson M, Stahlberg A, Arvidsson Y, Olofsson A, Semb H, Stenman G, Nilsson O, Aman P: The multifunctional FUS, EWS and TAF15 proto-oncoproteins show cell type-specific expression patterns and involvement in cell spreading and stress response. BMC Cell Biol 2008, 9:37.
  • [9]Zinszner H, Sok J, Immanuel D, Yin Y, Ron D: TLS (FUS) binds RNA in vivo and engages in nucleo-cytoplasmic shuttling. J Cell Sci 1997, 110:1741-1750.
  • [10]Mackenzie IRA, Rademakers R, Neumann M: TDP-43 and FUS in amyotrophic lateral sclerosis and frontotemporal dementia. Lancet Neurol 2010, 9:995-1007.
  • [11]Mackenzie I, Neumann M, Bigio E, Cairns N, Alafuzoff I, Kril J, Kovacs G, Ghetti B, Halliday G, Holm I, et al.: Nomenclature and nosology for neuropathologic subtypes of frontotemporal lobar degeneration: an update. Acta Neuropathol 2010, 119:1-4.
  • [12]Levites Y, Jansen K, Smithson LA, Dakin R, Holloway VM, Das P, Golde TE: Intracranial adeno-associated virus-mediated delivery of anti-pan amyloid beta, amyloid beta40, and amyloid beta42 single-chain variable fragments attenuates plaque pathology in amyloid precursor protein mice. J Neurosci 2006, 26:11923-11928.
  • [13]Passini MA, Watson DJ, Vite CH, Landsburg DJ, Feigenbaum AL, Wolfe JH: Intraventricular Brain Injection of Adeno-Associated Virus Type 1 (AAV1) in Neonatal Mice Results in Complementary Patterns of Neuronal Transduction to AAV2 and Total Long-Term Correction of Storage Lesions in the Brains of {beta}-Glucuronidase-Deficient Mice. J Virol 2003, 77:7034-7040.
  • [14]Tateishi T, Hokonohara T, Yamasaki R, Miura S, Kikuchi H, Iwaki A, Tashiro H, Furuya H, Nagara Y, Ohyagi Y, et al.: Multiple system degeneration with basophilic inclusions in Japanese ALS patients with FUS mutation. Acta Neuropathol 2010, 119:355-364.
  • [15]Blair IP, Williams KL, Warraich ST, Durnall JC, Thoeng AD, Manavis J, Blumbergs PC, Vucic S, Kiernan MC, Nicholson GA: FUS mutations in amyotrophic lateral sclerosis: clinical, pathological, neurophysiological and genetic analysis. J Neurol Neurosurg Psychiatry 2010, 81:639-645.
  • [16]DeJesus-Hernandez M, Kocerha J, Finch N, Crook R, Baker M, Desaro P, Johnston A, Rutherford N, Wojtas A, Kennelly K, et al.: De novo truncating FUS gene mutation as a cause of sporadic amyotrophic lateral sclerosis. Hum Mutat 2010, 31:E1377-E1389.
  • [17]Munoz D, Neumann M, Kusaka H, Yokota O, Ishihara K, Terada S, Kuroda S, Mackenzie I: FUS pathology in basophilic inclusion body disease. Acta Neuropathol 2009, 118:617-627.
  • [18]Huang EJ, Zhang J, Geser F, Trojanowski JQ, Strober JB, Dickson DW, Brown JRH, Shapiro BE, Lomen-Hoerth C: Extensive FUS-Immunoreactive Pathology in Juvenile Amyotrophic Lateral Sclerosis with Basophilic Inclusions. Brain Pathol 2010, 20:1069-1076.
  • [19]Mackenzie I, Munoz D, Kusaka H, Yokota O, Ishihara K, Roeber S, Kretzschmar H, Cairns N, Neumann M: Distinct pathological subtypes of FTLD-FUS. Acta Neuropathol 2011, 121:207-218.
  • [20]Cairns NJ, Zhukareva V, Uryu K, Zhang B, Bigio E, Mackenzie IRA, Gearing M, Duyckaerts C, Yokoo H, Nakazato Y, et al.: [alpha]-Internexin Is Present in the Pathological Inclusions of Neuronal Intermediate Filament Inclusion Disease. Am J Pathol 2004, 164:2153-2161.
  • [21]Fujita K, Ito H, Nakano S, Kinoshita Y, Wate R, Kusaka H: Immunohistochemical identification of messenger RNA-related proteins in basophilic inclusions of adult-onset atypical motor neuron disease. Acta Neuropathol 2008, 116:439-445.
  • [22]Fecto F, Yan J, Vemula SP, Liu E, Yang Y, Chen W, Zheng JG, Shi Y, Siddique N, Arrat H, et al.: SQSTM1 mutations in familial and sporadic amyotrophic lateral sclerosis. Arch Neurol 2011, 68:1440-1446.
  • [23]Maruyama H, Morino H, Ito H, Izumi Y, Kato H, Watanabe Y, Kinoshita Y, Kamada M, Nodera H, Suzuki H, et al.: Mutations of optineurin in amyotrophic lateral sclerosis. Nature 2010, 465:223-226.
  • [24]Cannon A, Yang B, Knight J, Farnham I, Zhang Y, Wuertzer C, D’Alton S, Lin W-l, Castanedes-Casey M, Rousseau L, et al.: Neuronal sensitivity to TDP-43 overexpression is dependent on timing of induction. Acta Neuropathol 2012, 123:807-823.
  • [25]Lanson NA Jr, Pandey UB: FUS-related proteinopathies: Lessons from animal models. Brain Res 2012, 1462:44-60.
  • [26]Da Cruz S, Cleveland DW: Understanding the role of TDP-43 and FUS/TLS in ALS and beyond. Curr Opin Neurobiol 2011, 21:904-919.
  • [27]Kino Y, Washizu C, Aquilanti E, Okuno M, Kurosawa M, Yamada M, Doi H, Nukina N: Intracellular localization and splicing regulation of FUS/TLS are variably affected by amyotrophic lateral sclerosis-linked mutations. Nucleic Acids Res 2011, 39:2781-2798.
  • [28]Fiesel FC, Kahle PJ: TDP-43 and FUS/TLS: cellular functions and implications for neurodegeneration. FEBS J 2011, 278:3550-3568.
  • [29]Strong MJ, Volkening K: TDP-43 and FUS/TLS: sending a complex message about messenger RNA in amyotrophic lateral sclerosis? FEBS J 2011, 278:3569-3577.
  • [30]Gal J, Zhang J, Kwinter DM, Zhai J, Jia H, Jia J, Zhu H: Nuclear localization sequence of FUS and induction of stress granules by ALS mutants. Neurobiol Aging 2011, 32:2323.e2327-2323.e2340.
  • [31]Dormann D, Rodde R, Edbauer D, Bentmann E, Fischer I, Hruscha A, Than ME, Mackenzie IRA, Capell A, Schmid B, et al.: ALS-associated fused in sarcoma (FUS) mutations disrupt Transportin-mediated nuclear import. EMBO J 2010, 29:2841-2857.
  • [32]Ito D, Seki M, Tsunoda Y, Uchiyama H, Suzuki N: Nuclear transport impairment of amyotrophic lateral sclerosis-linked mutations in FUS/TLS. Ann Neurol 2011, 69:152-162.
  • [33]Ju S, Tardiff DF, Han H, Divya K, Zhong Q, Maquat LE, Bosco DA, Hayward LJ, Brown RH Jr, Lindquist S, et al.: A Yeast Model of FUS/TLS-Dependent Cytotoxicity. PLoS Biol 2011, 9:e1001052.
  • [34]Sun Z, Diaz Z, Fang X, Hart MP, Chesi A, Shorter J, Gitler AD: Molecular Determinants and Genetic Modifiers of Aggregation and Toxicity for the ALS Disease Protein FUS/TLS. PLoS Biol 2011, 9:e1000614.
  • [35]Miguel L, Avequin T, Delarue M, Feuillette S, Frébourg T, Campion D, Lecourtois M: Accumulation of insoluble forms of FUS protein correlates with toxicity in Drosophila. Neurobiol Aging 2012, 33:1008.e1001-1008.e1015.
  • [36]Chen Y, Yang M, Deng J, Chen X, Ye Y, Zhu L, Liu J, Ye H, Shen Y, Li Y, et al.: Expression of human FUS protein in Drosophila leads to progressive neurodegeneration. Protein Cell 2011, 2:477-486.
  • [37]Lanson NA, Maltare A, King H, Smith R, Kim JH, Taylor JP, Lloyd TE, Pandey UB: A Drosophila model of FUS-related neurodegeneration reveals genetic interaction between FUS and TDP-43. Hum Mol Genet 2011, 20:2510-2523.
  • [38]Wang J-W, Brent JR, Tomlinson A, Shneider NA, McCabe BD: The ALS-associated proteins FUS and TDP-43 function together to affect Drosophila locomotion and life span. J Clin Invest 2011, 121:4118-4126.
  • [39]Murakami T, Yang SP, Xie L, Kawano T, Fu D, Mukai A, Bohm C, Chen F, Robertson J, Suzuki H, et al.: ALS mutations in FUS cause neuronal dysfunction and death in Caenorhabditis elegans by a dominant gain-of-function mechanism. Hum Mol Genet 2012, 21:1-9.
  • [40]Vaccaro A, Tauffenberger A, Aggad D, Rouleau G, Drapeau P, Parker JA: Mutant TDP-43 and FUS cause age-dependent paralysis and neurodegeneration in C. elegans. PLoS One 2012, 7:e31321.
  • [41]Xia R, Liu Y, Yang L, Gal J, Zhu H, Jia J: Motor neuron apoptosis and neuromuscular junction perturbation are prominent features in a Drosophila model of Fus-mediated ALS. Mol Neurodegener 2012, 7:10.
  • [42]Josephs K, Hodges J, Snowden J, Mackenzie I, Neumann M, Mann D, Dickson D: Neuropathological background of phenotypical variability in frontotemporal dementia. Acta Neuropathol 2011, 122:137-153.
  • [43]Ito H, Fujita K, Nakamura M, Wate R, Kaneko S, Sasaki S, Yamane K, Suzuki N, Aoki M, Shibata N, et al.: Optineurin is co-localized with FUS in basophilic inclusions of ALS with FUS mutation and in basophilic inclusion body disease. Acta Neuropathol 2011, 121:555-557.
  • [44]Hortobagyi T, Troakes C, Nishimura AL, Vance C, van Swieten JC, Seelaar H, King A, Al-Sarraj S, Rogelj B, Shaw CE: Optineurin inclusions occur in a minority of TDP-43 positive ALS and FTLD-TDP cases and are rarely observed in other neurodegenerative disorders. Acta Neuropathol 2011, 121:519-527.
  • [45]Neumann M, Roeber S, Kretzschmar H, Rademakers R, Baker M, Mackenzie I: Abundant FUS-immunoreactive pathology in neuronal intermediate filament inclusion disease. Acta Neuropathol 2009, 118:605-616.
  • [46]Page T, Gitcho M, Mosaheb S, Carter D, Chakraverty S, Perry R, Bigio E, Gearing M, Ferrer I, Goate A, et al.: FUS Immunogold Labeling TEM Analysis of the Neuronal Cytoplasmic Inclusions of Neuronal Intermediate Filament Inclusion Disease: A Frontotemporal Lobar Degeneration with FUS Proteinopathy. J Mol Neurosci 2011, 45:409-421.
  • [47]Vance C, Rogelj B, Hortobágyi T, De Vos KJ, Nishimura AL, Sreedharan J, Hu X, Smith B, Ruddy D, Wright P, et al.: Mutations in FUS, an RNA Processing Protein, Cause Familial Amyotrophic Lateral Sclerosis Type 6. Science 2009, 323:1208-1211.
  • [48]Lashley T, Rohrer JD, Bandopadhyay R, Fry C, Ahmed Z, Isaacs AM, Brelstaff JH, Borroni B, Warren JD, Troakes C, et al.: A comparative clinical, pathological, biochemical and genetic study of fused in sarcoma proteinopathies. Brain 2011, 134:2548-2564.
  • [49]Anderson P, Kedersha N: RNA granules: post-transcriptional and epigenetic modulators of gene expression. Nat Rev Mol Cell Biol 2009, 10:430-436.
  • [50]Anderson P, Kedersha N: Stress granules: the Tao of RNA triage. Trends Biochem Sci 2008, 33:141-150.
  • [51]Ito D, Suzuki N: Conjoint pathologic cascades mediated by ALS/FTLD-U linked RNA-binding proteins TDP-43 and FUS. Neurology 2011, 77:1636-1643.
  • [52]Deng H-X, Zhai H, Bigio EH, Yan J, Fecto F, Ajroud K, Mishra M, Ajroud-Driss S, Heller S, Sufit R, et al.: FUS-immunoreactive inclusions are a common feature in sporadic and non-SOD1 familial amyotrophic lateral sclerosis. Ann Neurol 2010, 67:739-748.
  • [53]Gendron T, Petrucelli L: Rodent Models of TDP-43 Proteinopathy: Investigating the Mechanisms of TDP-43-Mediated Neurodegeneration. J Mol Neurosci 2011, 45:486-499.
  • [54]Lanson NA Jr, Pandey UB: FUS-related proteinopathies: Lessons from animal models. Brain Res 2012, 1462:44-60.
  • [55]Bockstael O, Foust KD, Kaspar B, Tenenbaum L: Recombinant AAV Delivery to the Central Nervous System. Volume 807 edition. Edited by Snyder RO, Moullier P. Humana Press; 2011:159-177. [Walker JM (Series Editor): Methods in Molecular Biology]
  • [56]Renton Alan E, Majounie E, Waite A, Simón-Sánchez J, Rollinson S, Gibbs JR, Schymick Jennifer C, Laaksovirta H, van Swieten John C, Myllykangas L, et al.: A Hexanucleotide Repeat Expansion in C9ORF72 Is the Cause of Chromosome 9p21-Linked ALS-FTD. Neuron 2011, 72:257-268.
  • [57]DeJesus-Hernandez M, Mackenzie Ian R, Boeve Bradley F, Boxer Adam L, Baker M, Rutherford Nicola J, Nicholson Alexandra M, Finch NiCole A, Flynn H, Adamson J, et al.: Expanded GGGGCC Hexanucleotide Repeat in Noncoding Region of C9ORF72 Causes Chromosome 9p-Linked FTD and ALS. Neuron 2011, 72:245-256.
  • [58]Colombrita C, Onesto E, Tiloca C, Ticozzi N, Silani V, Ratti A: RNA-binding proteins and RNA metabolism: a new scenario in the pathogenesis of Amyotrophic Lateral Sclerosis. Arch Ital Biol 2011, 149:83-99.
  • [59]Ferraiuolo L, Kirby J, Grierson AJ, Sendtner M, Shaw PJ: Molecular pathways of motor neuron injury in amyotrophic lateral sclerosis. Nat Rev Neurol 2011, 7:616-630.
  • [60]Kim J, Miller VM, Levites Y, West KJ, Zwizinski CW, Moore BD, Troendle FJ, Bann M, Verbeeck C, Price RW, et al.: BRI2 (ITM2b) inhibits Abeta deposition in vivo. J Neurosci 2008, 28:6030-6036.
  • [61]Kukar TL, Ladd TB, Bann MA, Fraering PC, Narlawar R, Maharvi GM, Healy B, Chapman R, Welzel AT, Price RW, et al.: Substrate-targeting gamma-secretase modulators. Nature 2008, 453:925-929.
  • [62]Kukar T, Murphy MP, Eriksen JL, Sagi SA, Weggen S, Smith TE, Ladd T, Khan MA, Kache R, Beard J, et al.: Diverse compounds mimic Alzheimer disease-causing mutations by augmenting Abeta42 production. Nat Med 2005, 11:545-550.
  文献评价指标  
  下载次数:18次 浏览次数:15次