Molecular Neurodegeneration | |
Endogenous TDP-43, but not FUS, contributes to stress granule assembly via G3BP | |
Christine Vande Velde2  Stéphanie Stabile1  Anaïs Aulas1  | |
[1] Centre d’excellence en neuromique de l’Université de Montréal, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Departments of Medicine and Biochemistry, Université de Montréal, 1560 rue Sherbrooke Est, Montréal, QC, H2L 4M1, Canada;CHUM Research Center (CRCHUM), Université de Montréal, 1560 rue Sherbrooke Est, Montréal, H2L 4M1, Canada | |
关键词: Oxidative stress; Cell death; ALS; TIA-1; G3BP; FUS/TLS; Stress granules; TDP-43; | |
Others : 865420 DOI : 10.1186/1750-1326-7-54 |
|
received in 2012-05-25, accepted in 2012-10-19, 发布年份 2012 | |
【 摘 要 】
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the selective loss of upper and lower motor neurons, a cell type that is intrinsically more vulnerable than other cell types to exogenous stress. The interplay between genetic susceptibility and environmental exposures to toxins has long been thought to be relevant to ALS. One cellular mechanism to overcome stress is the formation of small dense cytoplasmic domains called stress granules (SG) which contain translationally arrested mRNAs. TDP-43 (encoded by TARDBP) is an ALS-causative gene that we have previously implicated in the regulation of the core stress granule proteins G3BP and TIA-1. TIA-1 and G3BP localize to SG under nearly all stress conditions and are considered essential to SG formation. Here, we report that TDP-43 is required for proper SG dynamics, especially SG assembly as marked by the secondary aggregation of TIA-1. We also show that SG assembly, but not initiation, requires G3BP. Furthermore, G3BP can rescue defective SG assembly in cells depleted of endogenous TDP-43. We also demonstrate that endogenous TDP-43 and FUS do not have overlapping functions in this cellular process as SG initiation and assembly occur normally in the absence of FUS. Lastly, we observe that SG assembly is a contributing factor in the survival of neuronal-like cells responding to acute oxidative stress. These data raise the possibility that disruptions of normal stress granule dynamics by loss of nuclear TDP-43 function may contribute to neuronal vulnerability in ALS.
【 授权许可】
2012 Aulas et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20140726070309539.pdf | 2056KB | download | |
632KB | Image | download | |
636KB | Image | download | |
646KB | Image | download | |
680KB | Image | download | |
633KB | Image | download | |
118KB | Image | download |
【 图 表 】
【 参考文献 】
- [1]Dion PA, Daoud H, Rouleau GA: Genetics of motor neuron disorders: new insights into pathogenic mechanisms. Nat Rev Genet 2009, 10:769-782.
- [2]Kabashi E, Valdmanis PN, Dion P, Spiegelman D, McConkey BJ, Vande Velde C, et al.: TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nat Genet 2008, 40:572-574.
- [3]Sreedharan J, Blair IP, Tripathi VB, Hu X, Vance C, Rogelj B, et al.: TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 2008, 319:1668-1672.
- [4]Lagier-Tourenne C, Cleveland DW: Rethinking ALS: the FUS about TDP-43. Cell 2009, 136:1001-1004.
- [5]Kwiatkowski TJ Jr, Bosco DA, Leclerc AL, Tamrazian E, Vanderburg CR, Russ C, et al.: Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 2009, 323:1205-1208.
- [6]Vance C, Rogelj B, Hortobagyi T, De Vos KJ, Nishimura AL, Sreedharan J, et al.: Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science 2009, 323:1208-1211.
- [7]Anderson P, Kedersha N: Stress granules. Curr Biol 2009, 19:R397-R398.
- [8]Anderson P, Kedersha N: Stress granules: the Tao of RNA triage. Trends Biochem Sci 2008, 33:141-150.
- [9]Gilks N, Kedersha N, Ayodele M, Shen L, Stoecklin G, Dember LM, et al.: Stress granule assembly is mediated by prion-like aggregation of TIA-1. Mol Biol Cell 2004, 15:5383-5398.
- [10]Tourriere H, Chebli K, Zekri L, Courselaud B, Blanchard JM, Bertrand E, et al.: The RasGAP-associated endoribonuclease G3BP assembles stress granules. J Cell Biol 2003, 160:823-831.
- [11]Kedersha N, Anderson P: Stress granules: sites of mRNA triage that regulate mRNA stability and translatability. Biochem Soc Trans 2002, 30:963-969.
- [12]McDonald KK, Aulas A, Destroismaisons L, Pickles S, Beleac E, Camu W, et al.: TAR DNA-binding protein 43 (TDP-43) regulates stress granule dynamics via differential regulation of G3BP and TIA-1. Hum Mol Genet 2011, 20:1400-1410.
- [13]Guil S, Long JC, Caceres JF: hnRNP A1 relocalization to the stress granules reflects a role in the stress response. Mol Cell Biol 2006, 26:5744-5758.
- [14]Zou T, Yang X, Pan D, Huang J, Sahin M, Zhou J: SMN deficiency reduces cellular ability to form stress granules, sensitizing cells to stress. Cell Mol Neurobiol 2011, 31:541-550.
- [15]Qi D, Huang S, Miao R, She ZG, Quinn T, Chang Y, et al.: Monocyte chemotactic protein-induced protein 1 (MCPIP1) suppresses stress granule formation and determines apoptosis under stress. J Biol Chem 2011, 286:41692-41700.
- [16]Didiot MC, Subramanian M, Flatter E, Mandel JL, Moine H: Cells lacking the fragile X mental retardation protein (FMRP) have normal RISC activity but exhibit altered stress granule assembly. Mol Biol Cell 2009, 20:428-437.
- [17]Hua Y, Zhou J: Survival motor neuron protein facilitates assembly of stress granules. FEBS Lett 2004, 572:69-74.
- [18]Nonhoff U, Ralser M, Welzel F, Piccini I, Balzereit D, Yaspo ML, et al.: Ataxin-2 interacts with the DEAD/H-box RNA helicase DDX6 and interferes with P-bodies and stress granules. Mol Biol Cell 2007, 18:1385-1396.
- [19]Yu Z, Zhu Y, Chen-Plotkin AS, Clay-Falcone D, McCluskey L, Elman L, et al.: PolyQ Repeat Expansions in ATXN2 Associated with ALS Are CAA Interrupted Repeats. PLoS One 2011, 6:e17951.
- [20]Lee T, Li YR, Ingre C, Weber M, Grehl T, Gredal O, et al.: Ataxin-2 intermediate-length polyglutamine expansions in European ALS patients. Hum Mol Genet 2011, 20:1697-1700.
- [21]Elden AC, Kim HJ, Hart MP, Chen-Plotkin AS, Johnson BS, Fang X, et al.: Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature 2010, 466:1069-1075.
- [22]Daoud H, Belzil V, Martins S, Sabbagh M, Provencher P, Lacomblez L, et al.: Association of Long ATXN2 CAG Repeat Sizes With Increased Risk of Amyotrophic Lateral Sclerosis. Arch Neurol 2011, 68:739-742.
- [23]Liu-Yesucevitz L, Bilgutay A, Zhang YJ, Vanderwyde T, Citro A, Mehta T, et al.: Tar DNA binding protein-43 (TDP-43) associates with stress granules: analysis of cultured cells and pathological brain tissue. PLoS One 2010, 5:e13250.
- [24]Dewey CM, Cenik B, Sephton CF, Dries DR, Mayer P III, Good SK, et al.: TDP-43 is directed to stress granules by sorbitol, a novel physiological osmotic and oxidative stressor. Mol Cell Biol 2010, 31:1098-1108.
- [25]Colombrita C, Zennaro E, Fallini C, Weber M, Sommacal A, Buratti E, et al.: TDP-43 is recruited to stress granules in conditions of oxidative insult. J Neurochem 2009, 111:1051-1061.
- [26]Gal J, Zhang J, Kwinter DM, Zhai J, Jia H, Jia J, et al.: Nuclear localization sequence of FUS and induction of stress granules by ALS mutants. Neurobiol Aging 2010, 32:2323.e27-2323.e40.
- [27]Bosco DA, Lemay N, Ko HK, Zhou H, Burke C, Kwiatkowski TJ Jr, et al.: Mutant FUS proteins that cause amyotrophic lateral sclerosis incorporate into stress granules. Hum Mol Genet 2010, 19:4160-4175.
- [28]Dormann D, Rodde R, Edbauer D, Bentmann E, Fischer I, Hruscha A, et al.: ALS-associated fused in sarcoma (FUS) mutations disrupt Transportin-mediated nuclear import. EMBO J 2010, 29:2841-2857.
- [29]Baumer D, Hilton D, Paine SM, Turner MR, Lowe J, Talbot K, et al.: Juvenile ALS with basophilic inclusions is a FUS proteinopathy with FUS mutations. Neurology 2010, 75:611-618.
- [30]Parker SJ, Meyerowitz J, James JL, Liddell JR, Crouch PJ, Kanninen KM, et al.: Endogenous TDP-43 localized to stress granules can subsequently form protein aggregates. Neurochem Int 2012, 60:415-424.
- [31]Lee EB, Lee VM, Trojanowski JQ: Gains or losses: molecular mechanisms of TDP43-mediated neurodegeneration. Nat Rev Neurosci 2012, 13:38-50.
- [32]Baloh RH: TDP-43: the relationship between protein aggregation and neurodegeneration in amyotrophic lateral sclerosis and frontotemporal lobar degeneration. FEBS J 2011, 278:3539-3549.
- [33]Wegorzewska I, Baloh RH: TDP-43-based animal models of neurodegeneration: new insights into ALS pathology and pathophysiology. Neurodegener Dis 2011, 8:262-274.
- [34]Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT, et al.: Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 2006, 314:130-133.
- [35]Arai T, Hasegawa M, Akiyama H, Ikeda K, Nonaka T, Mori H, et al.: TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun 2006, 351:602-611.
- [36]Tsai NP, Ho PC, Wei LN: Regulation of stress granule dynamics by Grb7 and FAK signalling pathway. EMBO J 2008, 27:715-726.
- [37]Fiesel FC, Voigt A, Weber SS, Van den HC, Waldenmaier A, Gorner K, et al.: Knockdown of transactive response DNA-binding protein (TDP-43) downregulates histone deacetylase 6. EMBO J 2010, 29:209-221.
- [38]Kryndushkin D, Wickner RB, Shewmaker F: FUS/TLS forms cytoplasmic aggregates, inhibits cell growth and interacts with TDP-43 in a yeast model of amyotrophic lateral sclerosis. Protein Cell 2011, 2:223-236.
- [39]Kim SH, Shanware N, Bowler MJ, Tibbetts RS: ALS-associated proteins TDP-43 and FUS/TLS function in a common biochemical complex to coregulate HDAC6 mRNA. J Biol Chem 2010, 286:12766-12774.
- [40]Vaccaro A, Tauffenberger A, Aggad D, Rouleau G, Drapeau P, Parker JA: Mutant TDP-43 and FUS Cause Age-Dependent Paralysis and Neurodegeneration in C. elegans. PLoS One 2012, 7:e31321.
- [41]Polymenidou M, Lagier-Tourenne C, Hutt KR, Huelga SC, Moran J, Liang TY, et al.: Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43. Nat Neurosci 2011, 14:459-468.
- [42]White JP, Cardenas AM, Marissen WE, Lloyd RE: Inhibition of cytoplasmic mRNA stress granule formation by a viral proteinase. Cell Host Microbe 2007, 2:295-305.
- [43]Piotrowska J, Hansen SJ, Park N, Jamka K, Sarnow P, Gustin KE: Stable formation of compositionally unique stress granules in virus-infected cells. J Virol 2010, 84:3654-3665.
- [44]Zekri L, Chebli K, Tourriere H, Nielsen FC, Hansen TV, Rami A, et al.: Control of fetal growth and neonatal survival by the RasGAP-associated endoribonuclease G3BP. Mol Cell Biol 2005, 25:8703-8716.
- [45]Tradewell ML, Yu Z, Tibshirani M, Boulanger MC, Durham HD, Richard S: Arginine methylation by PRMT1 regulates nuclear-cytoplasmic localization and toxicity of FUS/TLS harbouring ALS-linked mutations. Hum Mol Genet 2012, 21:136-149.
- [46]Damgaard CK, Lykke-Andersen J: Translational coregulation of 5'TOP mRNAs by TIA-1 and TIAR. Genes Dev 2011, 25:2057-2068.
- [47]Tian Q, Streuli M, Saito H, Schlossman SF, Anderson P: A polyadenylate binding protein localized to the granules of cytolytic lymphocytes induces DNA fragmentation in target cells. Cell 1991, 67:629-639.
- [48]Liu-Yesucevitz L, Bassell GJ, Gitler AD, Hart AC, Klann E, Richter JD, et al.: Local RNA translation at the synapse and in disease. J Neurosci 2011, 31:16086-16093.
- [49]Tsai NP, Tsui YC, Wei LN: Dynein motor contributes to stress granule dynamics in primary neurons. Neuroscience 2009, 159:647-656.