期刊论文详细信息
Particle and Fibre Toxicology
Seasonal associations of climatic drivers and malaria in the highlands of Ethiopia
Michael C. Wimberly3  Estifanos Bayabil1  Abere Mihretie1  Belay Beyene2  Alemayehu Midekisa3 
[1]Health Development and Anti-Malaria Association, Addis Ababa, Ethiopia
[2]Amhara Regional Health Bureau, Bahir Dar, Ethiopia
[3]Geospatial Sciences Center of Excellence (GSCE), South Dakota State University, Brookings, SD, USA
关键词: Mosquito;    Early warning;    Weather;    Climate;    Epidemic;    Malaria;   
Others  :  1224147
DOI  :  10.1186/s13071-015-0954-7
 received in 2014-11-28, accepted in 2015-06-13,  发布年份 2015
PDF
【 摘 要 】

Background

The impacts of interannual climate fluctuations on vector-borne diseases, especially malaria, have received considerable attention in the scientific literature. These effects can be significant in semi-arid and high-elevation areas such as the highlands of East Africa because cooler temperature and seasonally dry conditions limit malaria transmission. Many previous studies have examined short-term lagged effects of climate on malaria (weeks to months), but fewer have explored the possibility of longer-term seasonal effects.

Methods

This study assessed the interannual variability of malaria occurrence from 2001 to 2009 in the Amhara region of Ethiopia. We tested for associations of climate variables summarized during the dry (January–April), early transition (May–June), and wet (July–September) seasons with malaria incidence in the early peak (May–July) and late peak (September–December) epidemic seasons using generalized linear models. Climate variables included land surface temperature (LST), rainfall, actual evapotranspiration (ET), and the enhanced vegetation index (EVI).

Results

We found that both early and late peak malaria incidence had the strongest associations with meteorological conditions in the preceding dry and early transition seasons. Temperature had the strongest influence in the wetter western districts, whereas moisture variables had the strongest influence in the drier eastern districts. We also found a significant correlation between malaria incidence in the early and the subsquent late peak malaria seasons, and the addition of early peak malaria incidence as a predictor substantially improved models of late peak season malaria in both of the study sub-regions.

Conclusions

These findings suggest that climatic effects on malaria prior to the main rainy season can carry over through the rainy season and affect the probability of malaria epidemics during the late malaria peak. The results also emphasize the value of combining environmental monitoring with epidemiological surveillance to develop forecasts of malaria outbreaks, as well as the need for spatially stratified approaches that reflect the differential effects of climatic variations in the different sub-regions.

【 授权许可】

   
2015 Midekisa et al.

【 预 览 】
附件列表
Files Size Format View
20150908082401490.pdf 1652KB PDF download
Fig. 5. 19KB Image download
Fig. 4. 89KB Image download
Fig. 3. 88KB Image download
Fig. 2. 86KB Image download
Fig. 1. 133KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

【 参考文献 】
  • [1]Pascual M, Cazelles B, Bouma MJ, Chaves LF, Koelle K. Shifting patterns: malaria dynamics and rainfall variability in an African highland. Proc Biol Sci. 2008; 275(1631):123-32.
  • [2]Patz JA, Olson SH. Malaria risk and temperature: influences from global climate change and local land use practices. Proc Natl Acad Sci U S A. 2006; 103(15):5635-6.
  • [3]Zhou G, Minakawa N, Githeko AK, Yan GY. Association between climate variability and malaria epidemics in the East African highlands. Proc Natl Acad Sci U S A. 2004; 101(8):2375-80.
  • [4]Pascual M, Ahumada JA, Chaves LF, Rodo X, Bouma M. Malaria resurgence in the East African highlands: temperature trends revisited. Proc Natl Acad Sci U S A. 2006; 103(15):5829-34.
  • [5]Alonso D, Bouma MJ, Pascual M. Epidemic malaria and warmer temperatures in recent decades in an East African highland. Proc Biol Sci. 2011; 278(1712):1661-9.
  • [6]Abeku TA, de Vlas SJ, Borsboom G, Teklehaimanot A, Kebede A, Olana D et al.. Forecasting malaria incidence from historical morbidity patterns in epidemic-prone areas of Ethiopia: a simple seasonal adjustment method performs best. Trop Med Int Health. 2002; 7(10):851-7.
  • [7]Hay SI, Cox J, Rogers DJ, Randolph SE, Stern DI, Shanks GD et al.. Climate change and the resurgence of malaria in the East African highlands. Nature. 2002; 415(6874):905-9.
  • [8]Lindsay SW, Martens WJM. Malaria in the African highlands: past, present and future. Bull World Health Organ. 1998; 76(1):33-45.
  • [9]Wimberly MC, Midekisa A, Semuniguse P, Teka H, Henebry GM, Chuang TW et al.. Spatial synchrony of malaria outbreaks in a highland region of Ethiopia. Trop Med Int Health. 2012; 17(10):1192-201.
  • [10]Patz JA, Hulme M, Rosenzweig C, Mitchell TD, Goldberg RA, Githeko AK et al.. Climate change–regional warming and malaria resurgence. Nature. 2002; 420(6916):627-8.
  • [11]Teklehaimanot HD, Lipsitch M, Teklehaimanot A, Schwartz J. Weather-based prediction of Plasmodium falciparum malaria in epidemic-prone regions of Ethiopia I. Patterns of lagged weather effects reflect biological mechanisms. Malaria J. 2004; 3:41. BioMed Central Full Text
  • [12]Lindsay SW, Birley MH. Climate change and malaria transmission. Ann Trop Med Parasit. 1996; 90(6):573-88.
  • [13]Beck-Johnson LM, Nelson WA, Paaijmans KP, Read AF, Thomas MB, Bjornstad ON. The effect of temperature on Anopheles mosquito population dynamics and the potential for malaria transmission. PLoS One. 2013; 8(11): Article ID e79276
  • [14]Martens WJM, Niessen LW, Rotmans J, Jetten TH, Mcmichael AJ. Potential impact of global climate-change on malaria risk. Environ Health Persp. 1995; 103(5):458-64.
  • [15]Beier JC. Malaria parasite development in mosquitoes. Annu Rev Entomol. 1998; 43:519-43.
  • [16]Smith MW, Macklin MG, Thomas CJ. Hydrological and geomorphological controls of malaria transmission. Earth-Sci Rev. 2013; 116:109-27.
  • [17]Hardy AJ, Gamarra JGP, Cross DE, Macklin MG, Smith MW, Kihonda J et al.. Habitat hydrology and geomorphology control the distribution of malaria vector larvae in rural Africa. PLoS One. 2013; 8(12): Article ID e81931
  • [18]Shaman J, Day JF. Reproductive phase locking of mosquito populations in response to rainfall frequency. PLoS One. 2007; 2(3): Article ID e331
  • [19]Paaijmans KP, Wandago MO, Githeko AK, Takken W. Unexpected high losses of Anopheles gambiae larvae due to rainfall. PLoS One. 2007; 2(11): Article ID e1146
  • [20]Midekisa A, Senay G, Henebry GM, Semuniguse P, Wimberly MC. Remote sensing-based time series models for malaria early warning in the highlands of Ethiopia. Malaria J. 2012; 11:165. BioMed Central Full Text
  • [21]Males S, Gaye O, Garcia A. Long-term asymptomatic carriage of Plasmodium falciparum protects from malaria attacks: a prospective study among Senegalese children. Clin Infect Dis. 2008; 46(4):516-22.
  • [22]Harris I, Sharrock WW, Bain LM, Gray KA, Bobogare A, Boaz L et al.. A large proportion of asymptomatic Plasmodium infections with low and sub-microscopic parasite densities in the low transmission setting of Temotu Province, Solomon Islands: challenges for malaria diagnostics in an elimination setting. Malaria J. 2010; 9:54. BioMed Central Full Text
  • [23]Cucunuba ZM, Guerra AP, Rivera JA, Nicholls RS. Comparison of asymptomatic Plasmodium spp. infection in two malaria-endemic Colombian locations. Trans R Soc Trop Med Hyg. 2013; 107(2):129-36.
  • [24]Graves PM, Richards FO, Ngondi J, Emerson PM, Shargie EB, Endeshaw T et al.. Individual, household and environmental risk factors for malaria infection in Amhara, Oromia and SNNP regions of Ethiopia. Trans R Soc Trop Med Hyg. 2009; 103(12):1211-20.
  • [25]Jima D, Getachew A, Bilak H, Steketee RW, Emerson PM, Graves PM et al.. Malaria indicator survey 2007, Ethiopia: coverage and use of major malaria prevention and control interventions. Malaria J. 2010; 9:58. BioMed Central Full Text
  • [26]Negash K, Kebede A, Medhin A, Argaw D, Babaniyi O, Guintran JO et al.. Malaria epidemics in the highlands of Ethiopia. East Afr Med J. 2005; 82(4):186-92.
  • [27]Animut A, Balkew M, Lindtjorn B. Impact of housing condition on indoor-biting and indoor-resting Anopheles arabiensis density in a highland area, central Ethiopia. Malaria J. 2013; 12:393. BioMed Central Full Text
  • [28]Emerson PM, Ngondi J, Biru E, Graves PM, Ejigsemahu Y, Gebre T et al.. Integrating an NTD with one of “The Big Three”: combined malaria and trachoma survey in Amhara region of Ethiopia. PLoS Neglect Trop D. 2008; 2(3): Article ID e197
  • [29]Teklehaimanot HD, Schwartz J, Teklehaimanot A, Lipsitch M. Weather-based prediction of Plasmodium falciparum malaria in epidemic-prone regions of Ethiopia II. Weather-based prediction systems perform comparably to early detection systems in identifying times for interventions. Malaria J. 2004; 3:44. BioMed Central Full Text
  • [30]Wimberly MC, Chuang T-W, Henebry GM, Liu Y, Midekisa A, Semuniguse P et al.. A computer system for forecasting malaria epidemic risk using remotelysensed environmental data. International Environmental Modelling and Software Society (iEMSs) Proceedings of the 6th International Congress on Environmental Modelling and Software; Leipzig, Germany. 2012.
  • [31]Senay GB, Bohms S, Singh RK, Gowda PH, Velpuri NM, Alemu H et al.. Operational evapotranspiration mapping using remote sensing and weather datasets: a new parameterization for the SSEB approach. J Am Water Resour As. 2013; 49(3):577-91.
  • [32]Midekisa A, Senay GB, Wimberly MC. Multisensor earth observations to characterize wetlands and malaria epidemiology in Ethiopia. Water Resour Res. 2014; 50(11):8791-806.
  • [33]Jima D, Wondabeku M, Alemu A, Teferra A, Awel N, Deressa W et al.. Analysis of malaria surveillance data in Ethiopia: what can be learned from the Integrated Disease Surveillance and Response System? Malaria J. 2012; 11:330. BioMed Central Full Text
  • [34]Population and housing census report 2007. Addis Ababa, Ethiopia. 2010.
  • [35]Burnham KP, Anderson DR. Model selection and inference: a practical information–theoretic approach. Springer, New York; 2002.
  • [36]R: a language and environment for statistical computing. Vienna, Austria. 2014.
  • [37]Thomson MC, Mason SJ, Phindela T, Connor SJ. Use of rainfall and sea surface temperature monitoring for malaria early warning in Botswana. Am J Trop Med Hyg. 2005; 73(1):214-21.
  • [38]Thomson MC, Connor SJ. The development of malaria early warning systems for Africa. Trends Parasitol. 2001; 17(9):438-45.
  • [39]Abeku TA, Hay SI, Ochola S, Langi P, Beard B, de Vlas SJ et al.. Malaria epidemic early warning and detection in African highlands. Trends Parasitol. 2004; 20(9):400-5.
  • [40]Ceccato P, Ghebremeskel T, Jaiteh M, Graves PM, Levy M, Ghebreselassie S et al.. Malaria stratification, climate, and epidemic early warning in Eritrea. Am J Trop Med Hyg. 2007; 77(6):61-8.
  • [41]Olson SH, Gangnon R, Elguero E, Durieux L, Guegan JF, Foley JA et al.. Links between climate, malaria, and wetlands in the Amazon basin. Emerg Infect Dis. 2009; 15(4):659-62.
  • [42]Wimberly MC, Henebry GM, Liu Y, Senay B. EPIDEMIA–an EcoHealth informatics system for integrated forecasting of malaria epidemics. International Environmental Modelling and Software Society (iEMSs) Proceedings of the 7th International Congress on Environmental Modelling and Software; San Diego, CA, USA. 2014.
  文献评价指标  
  下载次数:32次 浏览次数:44次