期刊论文详细信息
Molecular Pain
Lipid rafts control P2X3 receptor distribution and function in trigeminal sensory neurons of a transgenic migraine mouse model
Andrea Nistri2  Elsa Fabbretti3  Arn MJM van den Maagdenberg1  Mayya Sundukova2  Aswini Gnanasekaran2 
[1] Department of Human Genetics, Leiden University Medical Centre, 2300 RC, Leiden, The Netherlands;Neurobiology Sector and Italian Institute of Technology Unit, International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste, Italy;Laboratory for Environmental Research, University of Nova Gorica, Vipavska 13, PO Box 301, Rožna Dolina, SI-5000, Slovenia
关键词: ATP;    membrane domains;    purinergic signalling;    neuronal sensitisation;   
Others  :  865711
DOI  :  10.1186/1744-8069-7-77
 received in 2011-04-19, accepted in 2011-09-29,  发布年份 2011
PDF
【 摘 要 】

Background

A genetic knock-in mouse model expressing the R192Q mutation of the α1-subunit of the CaV2.1 channels frequently found in patients with familial hemiplegic migraine shows functional upregulation of ATP-sensitive P2X3 receptors of trigeminal sensory neurons that transduce nociceptive inputs to the brainstem. In an attempt to understand the basic mechanisms linked to the upregulation of P2X3 receptor activity, we investigated the influence of the lipid domain of these trigeminal sensory neurons on receptor compartmentalization and function.

Results

Knock-in neurons were strongly enriched with lipid rafts containing a larger fraction of P2X3 receptors at membrane level. Pretreatment with the CaV2.1 channel blocker ω-agatoxin significantly decreased the lipid raft content of KI membranes. After pharmacologically disrupting the cholesterol component of lipid rafts, P2X3 receptors became confined to non-raft compartments and lost their functional potentiation typically observed in KI neurons with whole-cell patch-clamp recording. Following cholesterol depletion, all P2X3 receptor currents decayed more rapidly and showed delayed recovery indicating that alteration of the lipid raft milieu reduced the effectiveness of P2X3 receptor signalling and changed their desensitization process. Kinetic modeling could reproduce the observed data when slower receptor activation was simulated and entry into desensitization was presumed to be faster.

Conclusions

The more abundant lipid raft compartment of knock-in neurons was enriched in P2X3 receptors that exhibited stronger functional responses. These results suggest that the membrane microenvironment of trigeminal sensory neurons is an important factor in determining sensitization of P2X3 receptors and could contribute to a migraine phenotype by enhancing ATP-mediated responses.

【 授权许可】

   
2011 Gnanasekaran et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140726085834487.pdf 1735KB PDF download
51KB Image download
60KB Image download
71KB Image download
82KB Image download
58KB Image download
【 图 表 】

【 参考文献 】
  • [1]Hancock JF: Lipid rafts: contentious only from simplistic standpoints. Nat Rev Mol Cell Biol 2006, 7:456-462.
  • [2]Sobo K, Chevallier J, Parton RG, Gruenberg J, van der Goot FG: Diversity of raft-like domains in late endosomes. PLoS One 2007, 2:e391.
  • [3]Brown DA, London E: Functions of lipid rafts in biological membranes. Annu Rev Cell Dev Biol 1998, 14:111-136.
  • [4]Zajchowski LD, Robbins SM: Lipid rafts and little caves. Compartmentalized signalling in membrane microdomains. Eur J Biochem 2002, 269:737-752.
  • [5]Cooper JA, Qian H: A mechanism for SRC kinase-dependent signaling by noncatalytic receptors. Biochemistry 2008, 47(21):5681-8.
  • [6]Oneyama C, Iino T, Saito K, Suzuki K, Ogawa A, Okada M: Transforming potential of Src family kinases is limited by the cholesterol-enriched membrane microdomain. Mol Cell Biol 2009, 29:6462-6472.
  • [7]Pike LJ: Rafts defined: a report on the Keystone Symposium on Lipid Rafts and Cell Function. J Lipid Res 2006, 47:1597-1598.
  • [8]Lingwood D, Kaiser HJ, Levental I, Simons K: Lipid rafts as functional heterogeneity in cell membranes. Biochem Soc Trans 2009, 37:955-960.
  • [9]de Mello Coelho V, Nguyen D, Giri B, Bunbury A, Schaffer E, Taub DD: Quantitative differences in lipid raft components between murine CD4+ and CD8+ T cells. BMC Immunol 2004, 5:2. BioMed Central Full Text
  • [10]Magee T, Pirinen N, Adler J, Pagakis SN, Parmryd I: Lipid rafts: cell surface platforms for T cell signaling. Biol Res 2002, 35:127-131.
  • [11]Bruses JL, Chauvet N, Rutishauser U: Membrane lipid rafts are necessary for the maintenance of the (alpha)7 nicotinic acetylcholine receptor in somatic spines of ciliary neurons. J Neurosci 2001, 21:504-512.
  • [12]Pato C, Stetzkowski-Marden F, Gaus K, Recouvreur M, Cartaud A, Cartaud J: Role of lipid rafts in agrin-elicited acetylcholine receptor clustering. Chem Biol Interact 2008, 175:64-67.
  • [13]Hering H, Lin CC, Sheng M: Lipid rafts in the maintenance of synapses, dendritic spines, and surface AMPA receptor stability. J Neurosci 2003, 23:3262-3271.
  • [14]Delint-Ramirez I, Fernández E, Bayés A, Kicsi E, Komiyama NH, Grant SG: In vivo composition of NMDA receptor signaling complexes differs between membrane subdomains and is modulated by PSD-95 and PSD-93. J Neurosci 2010, 30(24):8162-70.
  • [15]Vacca F, Amadio S, Sancesario G, Bernardi G, Volonte C: P2X3 receptor localizes into lipid rafts in neuronal cells. J Neurosci Res 2004, 76:653-661.
  • [16]Garcia-Marcos M, Dehaye JP, Marino A: Membrane compartments and purinergic signalling: the role of plasma membrane microdomains in the modulation of P2XR-mediated signalling. FEBS J 2009, 276:330-340.
  • [17]Allsopp RC, Lalo U, Evans RJ: Lipid raft association and cholesterol sensitivity of P2X1-4 receptors for ATP: chimeras and point mutants identify intracellular amino-terminal residues involved in lipid regulation of P2X1 receptors. J Biol Chem 2010, 285:32770-32777.
  • [18]Vulchanova L, Riedl MS, Shuster SJ, Buell G, Surprenant A, North RA, Elde R: Immunohistochemical study of the P2X2 and P2X3 receptor subunits in rat and monkey sensory neurons and their central terminals. Neuropharmacology 1997, 36:1229-1242.
  • [19]Llewellyn-Smith IJ, Burnstock G: Ultrastructural localization of P2X3 receptors in rat sensory neurons. Neuroreport 1998, 9:2545-2550.
  • [20]Giniatullin R, Nistri A, Fabbretti E: Molecular mechanisms of sensitization of pain-transducing P2X3 receptors by the migraine mediators CGRP and NGF. Mol Neurobiol 2008, 37:83-90.
  • [21]Xu GY, Huang LY: Peripheral inflammation sensitizes P2X receptor-mediated responses in rat dorsal root ganglion neurons. J Neurosci 2002, 22:93-102.
  • [22]Liu M, Huang W, Wu D, Priestley JV: TRPV1, but not P2X, requires cholesterol for its function and membrane expression in rat nociceptors. Eur J Neurosci 2006, 24:1-6.
  • [23]Vacca F, Giustizieri M, Ciotti MT, Mercuri NB, Volonte C: Rapid constitutive and ligand-activated endocytic trafficking of P2X receptor. J Neurochem 2009, 109:1031-1041.
  • [24]Kilsdonk EP, Yancey PG, Stoudt GW, Bangerter FW, Johnson WJ, Phillips MC, Rothblat GH: Cellular cholesterol efflux mediated by cyclodextrins. J Biol Chem 1995, 270:17250-17256.
  • [25]van den Maagdenberg AM, Pietrobon D, Pizzorusso T, Kaja S, Broos LA, Cesetti T, van de Ven RC, Tottene A, van der Kaa J, Plomp JJ, Frants RR, Ferrari MD: A Cacna1a knockin migraine mouse model with increased susceptibility to cortical spreading depression. Neuron 2004, 41:701-710.
  • [26]Ophoff RA, Terwindt GM, Vergouwe MN, van Eijk R, Oefner PJ, Hoffman SM, Lamerdin JE, Mohrenweiser HW, Bulman DE, Ferrari M, Haan J, Lindhout D, van Ommen GJ, Hofker MH, Ferrari MD, Frants RR: Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca2+ channel gene CACNL1A4. Cell 1996, 87(3):543-552.
  • [27]Nair A, Simonetti M, Birsa N, Ferrari MD, van den Maagdenberg AM, Giniatullin R, Nistri A, Fabbretti E: Familial hemiplegic migraine Ca(v)2.1 channel mutation R192Q enhances ATP-gated P2X3 receptor activity of mouse sensory ganglion neurons mediating trigeminal pain. Mol Pain 2010, 6:48. BioMed Central Full Text
  • [28]Nicke A, Bäumert HG, Rettinger J, Eichele A, Lambrecht G, Mutschler E, Schmalzing G: P2X1 and P2X3 receptors form stable trimers: a novel structural motif of ligand-gated ion channels. EMBO J 1998, 17(11):3016-28.
  • [29]Simonetti M, Fabbro A, D'Arco M, Zweyer M, Nistri A, Giniatullin R, Fabbretti E: Comparison of P2X and TRPV1 receptors in ganglia or primary culture of trigeminal neurons and their modulation by NGF or serotonin. Mol Pain 2006, 2:11. BioMed Central Full Text
  • [30]Bickel PE, Scherer PE, Schnitzer JE, Oh P, Lisanti MP, Lodish HF: Flotillin and epidermal surface antigen define a new family of caveolae-associated integral membrane proteins. J Biol Chem 1997, 272:13793-13802.
  • [31]Blank N, Schiller M, Krienke S, Wabnitz G, Ho AD, Lorenz HM: Cholera toxin binds to lipid rafts but has a limited specificity for ganglioside GM1. Immunol Cell Biol 2007, 85:378-382.
  • [32]Jarvis MF, Khakh BS: ATP-gated P2X cation-channels. Neuropharmacology 2009, 56:208-215.
  • [33]Sokolova E, Skorinkin A, Moiseev I, Agrachev A, Nistri A, Giniatullin R: Experimental and modeling studies of desensitization of P2X3 receptors. Mol Pharmacol 2006, 70:373-382.
  • [34]Karoly R, Mike A, Illes P, Gerevich Z: The unusual state-dependent affinity of P2X3 receptors can be explained by an allosteric two-open-state model. Mol Pharmacol 2008, 73(1):224-34.
  • [35]Simons K, Toomre D: Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 2000, 1(1):31-9.
  • [36]Garcia-Marcos M, Pérez-Andrés E, Tandel S, Fontanils U, Kumps A, Kabré E, Gómez-Muñoz A, Marino A, Dehaye JP, Pochet S: Coupling of two pools of P2X7 receptors to distinct intracellular signaling pathways in rat submandibular gland. J Lipid Res 2006, 47(4):705-14.
  • [37]Taverna E, Saba E, Rowe J, Francolini M, Clementi F, Rosa P: Role of lipid microdomains in P/Q-type calcium channel (Cav2.1) clustering and function in presynaptic membranes. J Biol Chem 2004, 279(7):5127-34.
  • [38]Araud T, Wonnacott S, Bertrand D: Associated proteins: The universal toolbox controlling ligand gated ion channel function. Biochem Pharmacol 2010, 15;80(2):160-9.
  • [39]Dart C: Lipid microdomains and the regulation of ion channel function. J Physiol 2010, 588:3169-3178.
  • [40]Mo G, Bernier LP, Zhao Q, Chabot-Doré AJ, Ase AR, Logothetis D, Cao CQ, Séguéla P: Subtype-specific regulation of P2X3 and P2X2/3 receptors by phosphoinositides in peripheral nociceptors. Mol Pain 2009, 5:47. BioMed Central Full Text
  • [41]Bernier LP, Ase AR, Chevallier S, Blais D, Zhao Q, Boué-Grabot E, Logothetis D, Séguéla P: Phosphoinositides regulate P2X4 ATP-gated channels through direct interactions. J Neurosci 2008, 28(48):12938-45.
  • [42]Sokolova E, Skorinkin A, Fabbretti E, Masten L, Nistri A, Giniatullin R: Agonist-dependence of recovery from desensitization of P2X(3) receptors provides a novel and sensitive approach for their rapid up or downregulation. Br J Pharmacol 2004, 141:1048-1058.
  • [43]Corradi J, Gumilar F, Bouzat C: Single-channel kinetic analysis for activation and desensitization of homomeric 5-HT(3)A receptors. Biophys J 2009, 97(5):1335-45.
  • [44]Clarke RJ, Johnson JW: Voltage-dependent gating of NR1/2B NMDA receptors. J Physiol 2008, 586(Pt 23):5727-41.
  • [45]Partin KM, Fleck MW, Mayer ML: AMPA receptor flip/flop mutants affecting deactivation, desensitization, and modulation by cyclothiazide, aniracetam, and thiocyanate. J Neurosci 1996, 16:6634-6647.
  • [46]Skorinkin A, Nistri A, Giniatullin R: Bimodal action of protons on ATP currents of rat PC12 cells. J Gen Physiol 2003, 122(1):33-44.
  • [47]Paradiso KG, Steinbach JH: Nicotine is highly effective at producing desensitization of rat alpha4beta2 neuronal nicotinic receptors. J Physiol 2003, 553(Pt 3):857-71.
  • [48]Søgaard R, Werge TM, Bertelsen C, Lundbye C, Madsen KL, Nielsen CH, Lundbaek : GABA(A) receptor function is regulated by lipid bilayer elasticity. Biochemistry 2006, 45(43):13118-29.
  • [49]Barrantes FJ, Bermudez V, Borroni MV, Antollini SS, Pediconi MF, Baier JC, Bonini I, Gallegos C, Roccamo AM, Valles AS, Ayala V, Kamerbeek C: Boundary lipids in the nicotinic acetylcholine receptor microenvironment. J Mol Neurosci 2010, 40(1-2):87-90.
  • [50]Brannigan G, Hénin J, Law R, Eckenhoff R, Klein ML: Embedded cholesterol in the nicotinic acetylcholine receptor. Proc Natl Acad Sci USA 2008, 105(38):14418-23.
  • [51]Báez-Pagán CA, Martínez-Ortiz Y, Otero-Cruz JD, Salgado-Villanueva IK, Velázquez G, Ortiz-Acevedo A, Quesada O, Silva WI, Lasalde-Dominicci JA: Potential role of caveolin-1-positive domains in the regulation of the acetylcholine receptor's activatable pool: implications in the pathogenesis of a novel congenital myasthenic syndrome. Channels (Austin) 2008, 3:180-90.
  • [52]Zhu D, Xiong WC, Mei L: Lipid rafts serve as a signaling platform for nicotinic acetylcholine receptor clustering. J Neurosci 2006, 26:4841-51.
  • [53]Barrantes FJ: Cholesterol effects on nicotinic acetylcholine receptor. J Neurochem 2007, 103(Suppl 1):72-80.
  • [54]Fernandes CC, Berg DK, Gómez-Varela D: Lateral mobility of nicotinic acetylcholine receptors on neurons is determined by receptor composition, local domain, and cell type. J Neurosci 2010, 30(26):8841-51.
  • [55]Fabbretti E, D'Arco M, Fabbro A, Simonetti M, Nistri A, Giniatullin R: Delayed upregulation of ATP P2X3 receptors of trigeminal sensory neurons by calcitonin gene-related peptide. J Neurosci 2006, 26:6163-6171.
  • [56]Khanna S, Roy S, Park HA, Sen CK: Regulation of c-Src activity in glutamate induced neurodegeneration. J Biol Chem 2007, 282:23482-23490.
  • [57]D'Arco M, Giniatullin R, Leone V, Carloni P, Birsa N, Nair A, Nistri A, Fabbretti E: The C-terminal Src inhibitory kinase (Csk)-mediated tyrosine phosphorylation is a novel molecular mechanism to limit P2X3 receptor function in mouse sensory neurons. J Biol Chem 2009, 284:21393-21401.
  • [58]Shima T, Nada S, Okada M: Transmembrane phosphoprotein Cbp senses cell adhesion signaling mediated by Src family kinase in lipid rafts. Proc Natl Acad Sci USA 2003, 100:14897-14902.
  • [59]Mukherjee S, Zha X, Tabas I, Maxfield FR: Cholesterol distribution in living cells: fluorescence imaging using dehydroergosterol as a fluorescent cholesterol analog. Biophys J 1998, 75:1915-1925.
  • [60]Drabikowski W, Lagwinska E, Sarzala MG: Filipin as a fluorescent probe for the location of cholesterol in the membranes of fragmented sarcoplasmic reticulum. Biochim Biophys Acta 1973, 291:61-70.
  • [61]Szoke E, Börzsei R, Tóth DM, Lengl O, Helyes Z, Sándor Z, Szolcsányi J: Effect of lipid raft disruption on TRPV1 receptor activation of trigeminal sensory neurons and transfected cell line. Eur J Pharmacol 2010, 628(1-3):67-74.
  文献评价指标  
  下载次数:71次 浏览次数:0次