| Virology Journal | |
| Genome and proteome analysis of 7-7-1, a flagellotropic phage infecting Agrobacterium sp H13-3 | |
| Rüdiger Schmitt2  Patrick Babinger4  Jean-Paul Noben5  Rob Lavigne3  An Van den Bossche3  Andrew M Kropinski1  | |
| [1] Department of Molecular & Cellular Biology, University of Guelph, Guelph, NIG 2W1, ON, Canada;Institut für Biochemie, Genetik und Mikrobiologie, Universität Regensburg, D-93040, Regensburg, Germany;Division of Gene Technology, Katholieke Universiteit Leuven, Kasteelpark Arenberg 21, 3001, Heverlee, Belgium;Institut für Biophysik und physikalische Biochemie, Universität Regensburg, D-93040, Regensburg, Germany;Biomedical Research Institute and Transnational University Limburg, School of Life Sciences, Hasselt University, Diepenbeek, Belgium | |
| 关键词: Posttranslational modification; Bioinformatics; Complex flagellum; Proteome; Genome; Phage ecology; Phage evolution; Agrobacterium; | |
| Others : 1154623 DOI : 10.1186/1743-422X-9-102 |
|
| received in 2012-01-03, accepted in 2012-05-04, 发布年份 2012 | |
PDF
|
|
【 摘 要 】
Background
The flagellotropic phage 7-7-1 infects motile cells of Agrobacterium sp H13-3 by attaching to and traveling along the rotating flagellar filament to the secondary receptor at the base, where it injects its DNA into the host cell. Here we describe the complete genomic sequence of 69,391 base pairs of this unusual bacteriophage.
Methods
The sequence of the 7-7-1 genome was determined by pyro(454)sequencing to a coverage of 378-fold. It was annotated using MyRAST and a variety of internet resources. The structural proteome was analyzed by SDS-PAGE coupled electrospray ionization-tandem mass spectrometry (MS/MS).
Results
Sequence annotation and a structural proteome analysis revealed 127 open reading frames, 84 of which are unique. In six cases 7-7-1 proteins showed sequence similarity to proteins from the virulent Burkholderia myovirus BcepB1A. Unique features of the 7-7-1 genome are the physical separation of the genes encoding the small (orf100) and large (orf112) subunits of the DNA packaging complex and the apparent lack of a holin-lysin cassette. Proteomic analysis revealed the presence of 24 structural proteins, five of which were identified as baseplate (orf7), putative tail fibre (orf102), portal (orf113), major capsid (orf115) and tail sheath (orf126) proteins. In the latter case, the N-terminus was removed during capsid maturation, probably by a putative prohead protease (orf114).
【 授权许可】
2012 Kropinski et al.; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20150407105406113.pdf | 998KB | ||
| Figure 3 . | 43KB | Image | |
| Figure 2 . | 57KB | Image | |
| Figure 1 . | 69KB | Image |
【 图 表 】
Figure 1 .
Figure 2 .
Figure 3 .
【 参考文献 】
- [1]Wibberg D, Blom J, Jaenicke S, Kollin F, Rupp O, Scharf B, Schneiker-Bekel S, Sczcepanowski R, Goesmann A, Setubal JC, Schmitt R, Pühler A, Schlüter A: Complete genome sequencing of Agrobacterium sp. H13-3, the former Rhizobium lupini H13-3, reveals a tripartite genome consisting of a circular and a linear chromosome and an accessory plasmid but lacking a tumor-inducing Ti-plasmid. J Biotechnol 2011, 155:50-62.
- [2]Lotz W, Acker G, Schmitt R: Bacteriophage 7-7-1 adsorbs to the complex flagella of Rhizobium lupini H13-3. J Gen Virol 1977, 34:9-17.
- [3]Samuel AD, Pitta TP, Ryu WS, Danese PN, Leung EC, Berg HC: Flagellar determinants of bacterial sensitivity to chi-phage. Proc Natl Acad Sci USA 1999, 96:9863-9866.
- [4]Trachtenberg S, DeRosier DJ, Macnab RM: Three-dimensional structure of the complex flagellar filament of Rhizobium lupini and its relation to the structure of the plain filament. J Mol Biol 1987, 195:603-620.
- [5]Scharf B: Real-time imaging of fluorescent flagellar filaments of Rhizobium lupini H13-3: flagellar rotation and pH-induced polymorphic transitions. J Bacteriol 2002, 184:5979-5986.
- [6]Schmitt R, Bamberger I, Acker G, Mayer F: Feinstrukturanalyse der komplexen Geißeln von Rhizobium lupini H13-3. Arch Mikrobiol 1974, 100:145-162.
- [7]Schade SZ, Adler J, Ris H: How bacteriophage chi attacks motile bacteria. J Virol 1967, 1:591-598.
- [8]Yanagida M, Boy De La Tour E, Alff-Steinberger C, Kellenberger E: Studies on the morphopoiesis of the head of bacteriophage T-even. 8. Multilayered polyheads. J Mol Biol 1970, 50:35-58.
- [9]Schmitt R: Sinorhizobial chemotaxis: a departure from the enterobacterial paradigm. Microbiology 2002, 148:627-631.
- [10]Summer EJ, Gonzalez CF, Bomer M, Carlile T, Morrison W, Embry A, Kucherka AM, Lee J, Mebane L, Morrison WC, Mark L, King MD, LiPuma MJ, Vidaver AK, Young R: Divergence and mosaicism among virulent soil phages of the Burkholderia cepacia complex. J Bacteriol 2006, 188:255-268.
- [11]Wilson D, Pethica R, Zhou Y, Talbot C, Vogel C, Madera M, Chothia C, Gough J: SUPERFAMILY–sophisticated comparative genomics, data mining, visualization and phylogeny. Nucleic Acids Res 2009, 37:D380-D386.
- [12]Haft DH, Selengut JD, White O: The TIGRFAMs database of protein families. Nucleic Acids Res 2003, 31:371-373.
- [13]Ramirez-Romero MA, Masulis I, Cevallos MA, Gonzalez V, Davila G: The Rhizobium etli sigma70 (SigA) factor recognizes a lax consensus promoter. Nucleic Acids Res 2006, 34:1470-1480.
- [14]Seguritan V, Feng IW, Rohwer F, Swift M, Segall AM: Genome sequences of two closely related Vibrio parahaemolyticus phages, VP16T and VP16C. J Bacteriol 2003, 185:6434-6447.
- [15]Mmolawa PT, Schmieger H, Heuzenroeder MW: Bacteriophage ST64B, a genetic mosaic of genes from diverse sources isolated from Salmonella enterica serovar typhimurium DT 64. J Bacteriol 2003, 185:6481-6485.
- [16]Allison GE, Angeles D, Tran-Dinh N, Verma NK: Complete genomic sequence of SfV, a serotype-converting temperate bacteriophage of Shigella flexneri. J Bacteriol 2002, 184:1974-1987.
- [17]Goudie AD, Lynch KH, Seed KD, Stothard P, Shrivastava S, Wishart DS, Dennis JJ: Genomic sequence and activity of KS10, a transposable phage of the Burkholderia cepacia complex. BMC Genomics 2008, 9:615-615. BioMed Central Full Text
- [18]Hildebrand A, Remmert M, Biegert A, Soding J: Fast and accurate automatic structure prediction with HHpred. Proteins 2009, 77(Suppl 9):128-32. 128–132
- [19]Soding J, Biegert A, Lupas AN: The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res 2005, 33:W244-W248.
- [20]Rose PW, Beran B, Bi C, Bluhm WF, Dimitropoulos D, Goodsell DS, Prlic A, Quesada M, Quinn GB, Westbrook JD, Young J, Yukich B, Zardecki C, Berman HM, Bourne PE: The RCSB Protein Data Bank: redesigned web site and web services. Nucleic Acids Res 2011, 39:D392-D401.
- [21]Fokine A, Miroshnikov KA, Shneider MM, Mesyanzhinov VV, Rossmann MG: Structure of the bacteriophage ϕKZ lytic transglycosylase gp144. J Biol Chem 2008, 283:7242-7250.
- [22]Yamashita E, Nakagawa A, Takahashi J, Tsunoda K, Yamada S, Takeda S: The host-binding domain of the P2 phage tail spike reveals a trimeric iron-binding structure. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011, 67:837-841.
- [23]Hunt DF, Yates JR III, Shabanowitz J, Winston S, Hauer CR: Protein sequencing by tandem mass spectrometry. Proc Natl Acad Sci U S A 1986, 83:6233-6237.
- [24]Duda RL, Martincic K, Hendrix RW: Genetic basis of bacteriophage HK97 prohead assembly. J Mol Biol 1995, 247:636-647.
- [25]Huang RK, Khayat R, Lee KK, Gertsman I, Duda RL, Hendrix RW, Johnson JE: The Prohead-I structure of bacteriophage HK97: implications for scaffold-mediated control of particle assembly and maturation. J Mol Biol 2011, 408:541-554.
- [26]Fukuda A, Miyakawa K, Iba H, Okada Y: A flagellotropic bacteriophage and flagella formation in Caulobacter. Virology 1976, 71:583-592.
- [27]Guerrero-Ferreira RC, Viollier PH, Ely B, Poindexter JS, Georgieva M, Jensen GJ, Wright ER: Alternative mechanism for bacteriophage adsorption to the motile bacterium Caulobacter crescentus. Proc Natl Acad Sci USA 2011, 108:9963-9968.
- [28]Jollick JD, Wright BL: A flagella specific bacteriophage for Caulobacter. J Gen Virol 1974, 22:197-205.
- [29]Vieira G, de Lencastre H, Archer L: Restriction analysis of PBS 1-related phages. Arch Virol 1989, 106:121-126.
- [30]Shea TB, Seaman E: SP3: a flagellotropic bacteriophage of Bacillus subtilis. J Gen Virol 1984, 65:2073-2076.
- [31]Lovett PS: PBPI: a flagella specific bacteriophage mediating transduction in Bacillus pumilus. Virology 1972, 47:743-752.
- [32]Zhilenkov EL, Popova VM, Popov DV, Zavalsky LY, Svetoch EA, Stern NJ, Seal BS: The ability of flagellum-specific Proteus vulgaris bacteriophage PV22 to interact with Campylobacter jejuni flagella in culture. Virol J 2006, 3:50. BioMed Central Full Text
- [33]Geiben-Lynn R, Sauber K, Lutz F: Flagellin inhibits Myoviridae phage ϕCTX infection of Pseudomonas aeruginosa strain GuA18: purification and mapping of binding site. Arch Microbiol 2001, 176:339-346.
- [34]Bradley DE, Douglas CJ, Peschon J: Flagella-specific bacteriophages of Agrobacterium tumefaciens: demonstration of virulence of nonmotile mutants. Can J Microbiol 1984, 30:676-681.
- [35]Merino S, Camprubi S, Tomas JM: Isolation and characterization of bacteriophage PM3 from Aeromonas hydrophila the bacterial receptor for which is the monopolar flagellum. FEMS Microbiol Lett 1990, 57:277-282.
- [36]Pate JL, Petzold SJ, Umbreit TH: Two flagellotropic phages and one pilus-specific phage active against Asticcacaulis biprosthecum. Virology 1979, 94:24-37.
- [37]Nakayama K, Kanaya S, Ohnishi M, Terawaki Y, Hayashi T: The complete nucleotide sequence of ϕCTX, a cytotoxin-converting phage of Pseudomonas aeruginosa: implications for phage evolution and horizontal gene transfer via bacteriophages. Mol Microbiol 1999, 31:399-419.
- [38]Tippmann HF: Analysis for free: comparing programs for sequence analysis. Brief Bioinform 2004, 5:82-87.
- [39]Gábor M: Transformation of streptomycin markers in rough strains of Rhizobium lupini. II. The relation between the derterminant of streptomycin dependence and those for streptomycin resistance and sensitiveness. Genetics 1965, 52:905-913.
- [40]Lotz W, Mayer F: Electron microscopical characterization of newly isolated Rhizobium lupini bacteriophages. Can J Microbiol 1972, 18:1271-1274.
- [41]Sambrook J, Russell DW: Molecular Cloning: A Laboratory Manual. Third edition edition. Cold Spring Harbor Press, Cold Spring Harbor, New York; 2001.
- [42]Lowe TM, Eddy SR: tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 1997, 25:955-964.
- [43]Laslett D, Canback B: ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res 2004, 32:11-16.
- [44]Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, Apweiler R, Lopez R: InterProScan: protein domains identifier. Nucleic Acids Res 2005, 33:W116-W120.
- [45]Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington JE, Gavin OL, Gunasekaran P, Ceric G, Forslund K, Holm L, Sonnhammer EL, Eddy SR, Bateman A: The Pfam protein families database. Nucleic Acids Res 2010, 38:D211-D222.
- [46]Sonnhammer EL, Von HG, Krogh A: A hidden Markov model for predicting transmembrane helices in protein sequences. Proc Int Conf Intell Syst Mol Biol 1998, 6:175-182.
- [47]Kall L, Krogh A, Sonnhammer EL: A combined transmembrane topology and signal peptide prediction method. J Mol Biol 2004, 338:1027-1036.
- [48]Gautheret D, Lambert A: Direct RNA motif definition and identification from multiple sequence alignments using secondary structure profiles. J Mol Biol 2001, 313:1003-1011.
- [49]Macke TJ, Ecker DJ, Gutell RR, Gautheret D, Case DA, Sampath R: RNAMotif, an RNA secondary structure definition and search algorithm. Nucleic Acids Res 2001, 29:4724-4735.
- [50]Zuker M, Zuker M: Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 2003, 31:3406-3415.
- [51]Darling AE, Mau B, Perna NT: progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One 2010, 5:e11147.
- [52]Kropinski AM, Borodovsky M, Carver TJ, Cerdeno-Tarraga AM, Darling A, Lomsadze A, Mahadevan P, Stothard P, Seto D, Van DG, Wishart DS: In silico identification of genes in bacteriophage DNA. Methods Mol Biol 2009, 502:57-89.
- [53]Zafar N, Mazumder R, Seto D: CoreGenes: a computational tool for identifying and cataloging "core" genes in a set of small genomes. BMC Bioinformatics 2002, 3:12. BioMed Central Full Text
- [54]Moak M, Molineux IJ: Peptidoglycan hydrolytic activities associated with bacteriophage virions. Mol Microbiol 2004, 51:1169-1183.
- [55]Shevchenko A, Jensen ON, Podtelejnikov AV, Sagliocco F, Wilm M, Vorm O, Mortensen P, Shevchenko A, Boucherie H, Mann M: Linking genome and proteome by mass spectrometry: large-scale identification of yeast proteins from two dimensional gels. Proc Natl Acad Sci USA 1996, 93:14440-14445.
- [56]Lavigne R, Noben JP, Hertveldt K, Ceyssens PJ, Briers Y, Dumont D, Roucourt B, Krylov VN, Mesyanzhinov VV, Robben J, Volckaert G: The structural proteome of Pseudomonas aeruginosa bacteriophage ϕKMV. Microbiology 2006, 152:529-534.
PDF