Radiation Oncology | |
The biochemical recurrence-free rate in patients who underwent prostate low-dose-rate brachytherapy, using two different definitions | |
Kiyohide Fujimoto1  Noboru Konishi2  Masatoshi Hasegawa3  Akihide Hirayama4  Emiko Katayama3  Isao Asakawa3  Nobumichi Tanaka1  | |
[1] Department of Urology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan;Department of Pathology, Nara Medical University, Kashihara, Nara, Japan;Department of Radiation Oncology, Nara Medical University, Kashihara, Nara, Japan;Department of Urology, Nara Hospital Kinki University Faculty of Medicine, Ikoma, Nara, Japan | |
关键词: BED; Biochemical recurrence-free rate; LDR-brachytherapy; Prostate cancer; | |
Others : 805329 DOI : 10.1186/1748-717X-9-107 |
|
received in 2014-03-20, accepted in 2014-04-24, 发布年份 2014 | |
【 摘 要 】
Background
To assess the biochemical recurrence (BCR)-free rate in patients who underwent prostate low-dose-rate brachytherapy (LDR-brachytherapy), using two different definitions (Phoenix definition and PSA ≥ 0.2 ng/mL).
Methods
Two hundreds and three patients who were clinically diagnosed with localized prostate cancer (cT1c-2cN0M0) and underwent LDR-brachytherapy between July 2004 and September 2008 were enrolled. The median follow-up period was 72 months. We evaluated the BCR-free rate using the Phoenix definition and the PSA cut-off value of 0.2 ng/mL, as in the definition for radical prostatectomy. To evaluate an independent variable that can predict BCR, Cox’s proportional hazard regression analysis was carried out.
Results
The BCR-free rate in patients using the Phoenix definition was acceptable (5-year: 92.8%). The 5- year BCR-free rate using the strict definition (PSA ≥ 0.2 ng/mL) was 74.1%. Cox’s proportional hazard regression analysis showed that a higher biological effective dose (BED) of ≥180 Gy2 was the only independent variable that could predict BCR (HR: 0.570, 95% C.I.: 0.327-0.994, p = 0.048). Patients with a higher BED (≥180 Gy2) had a significantly higher BCR-free rate than those with a lower BED (<180 Gy2) (5-year BCR-free rate: 80.5% vs. 67.4%).
Conclusions
A higher BED ≥180 Gy2 promises a favorable BCR-free rate, even if the strict definition is adopted.
【 授权许可】
2014 Tanaka et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20140708074851965.pdf | 593KB | download | |
Figure 5. | 32KB | Image | download |
Figure 4. | 33KB | Image | download |
Figure 3. | 25KB | Image | download |
Figure 2. | 34KB | Image | download |
Figure 1. | 24KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
【 参考文献 】
- [1]Grimm P, Billiet I, Bostwick D, Dicker AP, Frank S, Immerzeel J, Keyes M, Kupelian P, Lee WR, Machtens S, Mayadev J, Moran BJ, Merrick G, Millar J, Roach M, Stock R, Shinohara K, Scholz M, Weber E, Zietman A, Zelefsky M, Wong J, Wentworth S, Vera R, Langley S: Comparative analysis of prostate-specific antigen free survival outcomes for patients with low, intermediate and high risk prostate cancer treatment by radical therapy. Results from the Prostate Cancer Results Study Group. BJU Int 2012, 109(Suppl 1):22-29.
- [2]Taira AV1, Merrick GS, Butler WM, Galbreath RW, Lief J, Adamovich E, Wallner KE: Long-term outcome for clinically localized prostate cancer treated with permanent interstitial brachytherapy. Int J Radiat Oncol Biol Phys 2011, 79:1336-1342.
- [3]Sylvester JE, Grimm PD, Blasko JC, Millar J, Orio PF 3rd, Skoglund S, Galbreath RW, Merrick G: 15-Year biochemical relapse free survival in clinical Stage T1-T3 prostate cancer following combined external beam radiotherapy and brachytherapy; Seattle experience. Int J Radiat Oncol Biol Phys 2007, 67:57-64.
- [4]Hull GW, Rabbani F, Abbas F, Wheeler TM, Kattan MW, Scardino PT: Cancer control with radical prostatectomy alone in 1,000 consecutive patients. J Urol 2002, 167:528-534.
- [5]Han M1, Partin AW, Zahurak M, Piantadosi S, Epstein JI, Walsh PC: Biochemical (prostate specific antigen) recurrence probability following radical prostatectomy for clinically localized prostate cancer. J Urol 2003, 169:517-523.
- [6]Kuban DA1, Levy LB, Cheung MR, Lee AK, Choi S, Frank S, Pollack A: Long-term failure patterns and survival in a randomized dose-escalation trial for prostate cancer. Who dies of disease? Int J Radiat Oncol Biol Phys 2011, 79:1310-1317.
- [7]Cookson MS, Aus G, Burnett AL, Canby-Hagino ED, D’Amico AV, Dmochowski RR, Eton DT, Forman JD, Goldenberg SL, Hernandez J, Higano CS, Kraus SR, Moul JW, Tangen C, Thrasher JB, Thompson I: Variation in the definition of biochemical recurrence in patients treated for localized prostate cancer: the American Urological Association Prostate Guidelines for Localized Prostate Cancer Update Panel report and recommendations for a standard in the reporting of surgical outcomes. J Urol 2007, 177:540-545.
- [8]Roach M 3rd, Hanks G, Thames H Jr, Schellhammer P, Shipley WU, Sokol GH, Sandler H: Defining biochemical failure following radiotherapy with or without hormonal therapy in men with clinically localized prostate cancer: recommendations of the RTOG-ASTRO Phoenix Consensus Conference. Int J Radiat Oncol Biol Phys 2006, 65:965-974.
- [9]American Urological Association (AUA): Guideline, Guideline for the Management of Clinically Localized Prostate Cancer. 2007. [http://www.auanet.org/education/guidelines/prostate-cancer.cfm webcite]
- [10]European Association of Urology (EAU): Guideline. [http://www.uroweb.org webcite]
- [11]National Comprehensive Cancer Network (NCCN): Clinical Practice Guidelines in Oncology, Prostate Cancer. [http://www.nccn.org webcite]
- [12]D’Amico AV1, Whittington R, Malkowicz SB, Schultz D, Blank K, Broderick GA, Tomaszewski JE, Renshaw AA, Kaplan I, Beard CJ, Wein A: Biochemical outcome after radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer. JAMA 1998, 280:969-974.
- [13]Tanaka N, Asakawa I, Kondo H, Tanaka M, Fujimoto K, Hasegawa M, Konishi N, Hirao Y: Technical acquisition and dosimetric assessment of iodine-125 permanent brachytherapy in localized prostate cancer: our first series of 100 patients. Int J Urol 2009, 16:70-74.
- [14]Stock RG1, Stone NN, Cesaretti JA, Rosenstein BS: Biologically effective dose values for prostate brachytherapy: effects on PSA failure and posttreatment biopsy results. Int J Radiat Oncol Biol Phys 2006, 64:527-533.
- [15]Critz FA1, Benton JB, Shrake P, Merlin ML: 25-Year disease-free survival rate after irradiation for prostate cancer calculated with the prostate specific antigen definition of recurrence used for radical prostatectomy. J Urol 2013, 189:878-883.
- [16]Stone NN, Stock RG, Cesaretti JA, Unger P: Local control following permanent prostate brachytherapy: effect of high biologically effective dose on biopsy results and oncologic outcomes. Int J Radiat Oncol Biol Phys 2010, 76:355-360.
- [17]Nielsen ME, Makarov DV, Humphreys E, Mangold L, Partin AW, Walsh PC: Is it possible to compare PSA recurrence-free survival after surgery and radiotherapy using revised ASTRO criterion–“nadir + 2”? Urology 2008, 72:389-395.