期刊论文详细信息
Radiation Oncology
Dose escalation of accelerated hypofractionated three-dimensional conformal radiotherapy (at 3 Gy/fraction) with concurrent vinorelbine and carboplatin chemotherapy in unresectable stage III non-small-cell lung cancer: a phase I trial
Jing Hu1  Zhi-Jun Guo1  Yu Peng1  Jie Zong1  Dong-Ying Wang1  Xue-Ji Chen1  Na Wang1  Xiao-Cang Ren1  Yue-E Liu1  Qiang Lin1 
[1] Department of Oncology, North China Petroleum Bureau General Hospital of Hebei Medical University, 8 Huizhan Avenue, Renqiu, Hebei Province 062552, P.R. China
关键词: Carboplatin;    Vinorelbine;    Maximum tolerated dose;    Concurrent chemoradiotherapy;    Non-small-cell lung cancer;    Three-dimensional conformal radiotherapy;    Accelerated hypofractionated radiotherapy;   
Others  :  1153217
DOI  :  10.1186/1748-717X-8-201
 received in 2013-03-30, accepted in 2013-08-16,  发布年份 2013
PDF
【 摘 要 】

Background

Accelerated hypofractionated radiotherapy can shorten total treatment time and overcome the accelerated repopulation of tumour cells during radiotherapy. This therapeutic approach has demonstrated good efficacy in the treatment of locally advanced non-small-cell lung cancer (NSCLC). However, the optimal fractionation scheme remains uncertain. The purpose of this phase I trial was to explore the maximum tolerated dose (MTD) of accelerated hypofractionated three-dimensional conformal radiotherapy (3-DCRT) (at 3 Gy/fraction) administered in combination with concurrent vinorelbine (NVB) and carboplatin (CBP) chemotherapy for unresectable stage III NSCLC.

Methods

Previously untreated cases of unresectable stage III NSCLC received accelerated hypofractionated 3-DCRT, delivered at 3 Gy per fraction, once daily, with five fractions per week. The starting dose was 66 Gy and an increment of 3 Gy was utilized. Higher doses continued to be tested in patient groups until the emergence of dose-limiting toxicity (DLT). The MTD was regarded as the dose that was one step below the dose at which DLT occurred. Patients received at least one cycle of a concurrent two-drug chemotherapy regimen of NVB and CBP.

Results

A total of 13 patients were enrolled and progressed through three dose escalation groups: 66 Gy, 69 Gy, and 72 Gy. No treatment-related deaths occurred. The major adverse events included radiation oesophagitis, radiation pneumonitis, and neutropenia. Nausea, fatigue, and anorexia were commonly observed, although the magnitude of these events was typically relatively minor. Among the entire group, four instances of DLT were observed, including two cases of grade 3 radiation oesophagitis, one case of grade 3 radiation pneumonitis, and one case of grade 4 neutropenia. All of these cases of DLT occurred in the 72 Gy group. Therefore, 72 Gy was designated as the DLT dose level, and the lower dose of 69 Gy was regarded as the MTD.

Conclusions

For unresectable stage III NSCLC 69 Gy (at 3 Gy/fraction) was the MTD of accelerated hypofractionated 3-DCRT administered in combination with concurrent NVB and CBP chemotherapy. The toxicity of this chemoradiotherapy regimen could be tolerated. A phase II trial is recommended to further evaluate the efficacy and safety of this regimen.

【 授权许可】

   
2013 Lin et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150407055702606.pdf 608KB PDF download
Figure 1. 22KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]Stinchcombe TE, Bogart JA: Novel approaches of chemoradiotherapy in unresectable stage IIIA and stage IIIB non-small cell lung cancer. Oncologist 2012, 17:682-693.
  • [2]Dillman RO, Herndon J, Seagren SL, Eaton WL Jr, Green MR: Improved survival in stage III non-small-cell lung cancer: seven year follow-up of cancer and leukemia group B (CALGB) 8433 trial. J Natl Cancer Inst 1996, 88:1210-1215.
  • [3]Furuse K, Fukuoka M, Kawahara M, Nishikawa H, Takada Y, Kudoh S, Katagami N, Ariyoshi Y: Phase III study of concurrent versus sequential thoracic radiotherapy in combination with mitomycin, vindesine, and cisplatin in unresectable stage III non-small cell lung cancer. J Clin Oncol 1999, 17:2692-2699.
  • [4]Zatloukal P, Petruzelka L, Zemanova M, Havel L, Janku F, Judas L, Kubik A, Krepela E, Fiala P, Pecen L: Concurrent versus sequential chemoradiotherapy with cisplatin and vinorelbine in locally advanced non-small cell lung cancer: a randomized study. Lung Cancer 2004, 46:87-98.
  • [5]Aupérin A, Le Péchoux C, Rolland E, Curran WJ, Furuse K, Fournel P, Belderbos J, Clamon G, Ulutin HC, Paulus R, Yamanaka T, Bozonnat MC, Uitterhoeve A, Wang X, Stewart L, Arriagada R, Burdett S, Pignon JP: Meta-analysis of concomitant versus sequential radiochemotherapy in locally advanced non-small-cell lung cancer. J Clin Oncol 2010, 28:2181-90.
  • [6]Bradley JD, Moughan J, Graham MV, Byhardt R, Govindan R, Fowler J, Purdy JA, Michalski JM, Gore E, Choy H: A phase I/II radiation dose escalation study with concurrent chemotherapy for patients with inoperable stages I to III non-small-cell lung cancer: phase I results of RTOG 0117. Int J Radiat Oncol Biol Phys 2010, 77:367-372.
  • [7]Schild SE, McGinnis WL, Graham D, Hillman S, Fitch TR, Northfelt D, Garces YI, Shahidi H, Tschetter LK, Schaefer PL, Adjei A, Jett J: Results of a Phase I trial of concurrent chemotherapy and escalating doses of radiation for unresectable non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 2006, 65:1106-1111.
  • [8]Bradley JD, Paulus R, Komaki R: A randomized phase III comparison of standard-dose (60 Gy) versus high-dose (74 Gy) conformal chemoradiotherapy cetuximab for stage IIIa/IIIb non-small cell lung cancer: Preliminary findings on radiation dose in RTOG 0617. Miami Beach, Florida: Presented at the 53rd ASTRO Annual Meeting; 2011.
  • [9]Mehta M, Scrimger R, Mackie R, Paliwal B, Chappell R, Fowler J: A new approach to dose escalation in non–small-cell lung cancer. Int J Radiat Oncol Biol Phys 2001, 49:23-33.
  • [10]Nakayama H, Satoh H, Kurishima K, Ishikawa H, Tokuuye K: High-dose conformal radiotherapy for patients with stage III non-small-cell lung carcinoma. Int J Radiat Oncol Biol Phys 2010, 78:645-650.
  • [11]Machtay M, Bae K, Movsas B, Paulus R, Gore EM, Komaki R, Albain K, Sause WT, Curran WJ: Higher biologically effective dose of radiotherapy is associated with improved outcomes for locally advanced non-small cell lung carcinoma treated with chemoradiation: an analysis of the Radiation Therapy Oncology Group. Int J Radiat Oncol Biol Phys 2012, 82:425-434.
  • [12]Saunders M, Dische S, Barrett A, Harvey A, Gibson D, Parmar M: Continuous hyperfractionated accelerated radiotherapy (CHART) versus conventional radiotherapy in non-small-cell lung cancer: a randomised multicentre trial. CHART Steering Committee. Lancet 1997, 350:161-165.
  • [13]Mehta MP, Tannehill SP, Adak S, Martin L, Petereit DG, Wagner H, Fowler JF, Johnson D: Phase II trial of hyperfractionated accelerated radiation therapy for nonresectable non-small-cell lung cancer: results of Eastern Cooperative Oncology Group 4593. J Clin Oncol 1998, 16:3518-3523.
  • [14]Xie SX, Li WX, Lin YR, Zou WC: Three-dimensional conformal hypofractionated radiotherapy for non-small -cell lung cancer. China Oncology 2006, 12:1034-1037. in Chinese
  • [15]Kim B, Ahn YC, Lim do H, Nam HR: High-dose thoracic radiation therapy at 3.0 Gy/fraction in inoperable stage I/II non-small cell lung cancer. Jpn J Clin Oncol 2008, 38:92-98.
  • [16]Xie SX, Li WX, Zeng ZJ, Chen YR: Escalated Dose Trial with Hypofractionated Three-dimensional Conformal Radiation Therapy for Non-small Cell Lung Cancer. Chin J Clin Oncol 2009, 36:972-975. (in Chinese)
  • [17]Zhu GY, Xia TY, Wang LH, Gao XS, Wang JJ, Li GF, Zhang FQ, Ma L, Li YX, Xu B: Consensus and controversies on delineation of radiotherapy target volume for patients with non-small cell lung cancer. Chin J Radiat Oncol 2008, 17:432-436. (in Chinese)
  • [18]Lin Q, Liu Y, Wang N, Huang Y, Ge X, Ren X, Chen X, Hu J, Guo Z, Zhao Y, Asaumi J: A modified Phase I trial of radiation dose escalation in 3D conformal radiation therapy with concurrent vinorelbine and carboplatin chemotherapy for non-small-cell lung cancer. J Radiat Res 2013, 54:126-134.
  • [19]Uitterhoeve AL, Belderbos JS, Koolen MG, Van der Vaart PJ, Rodrigus PT, Benraadt J, Koning CC, González González D, Bartelink H: Toxicity of high-dose radiotherapy combined with daily cisplatin in non-small cell lung cancer: results of the EORTC 08912 phase I/II study. European Organization for Research and Treatment of Cancer. Eur J Cancer 2000, 36:592-600.
  • [20]Lin Q, Gao XS, Qiao XY, Zhou ZG, Zhang P, Chen K, Zhao YN, Asaumi J: Phase I trial of escalatingdose cisplatin with 5-fluorouracil and concurrent radiotherapy in Chinese patients with esophageal cancer. Acta Med Okayama 2008, 62:37-44.
  • [21]Lin Q, Wang J, Liu Y, Su H, Wang N, Huang Y, Liu CX, Zhang P, Zhao Y, Chen K: High-dose 3-dimensional conformal radiotherapy with concomitant vinorelbine plus carboplatin in patients with non-small cell lung cancer: a feasibility study. Oncol Lett 2011, 2:669-674.
  • [22]Brenner B, Ilson DH, Minsky BD, Bains MS, Tong W, Gonen M, Kelsen DP: Phase I trial of combined-modality therapy for localized esophageal cancer: escalating doses of continuous-infusion paclitaxel with cisplatin and concurrent radiation therapy. J Clin Oncol 2004, 22:45-52.
  • [23]Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, Dancey J, Arbuck S, Gwyther S, Mooney M, Rubinstein L, Shankar L, Dodd L, Kaplan R, Lacombe D, Verweij J: New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 2009, 45:228-247.
  • [24]Fletcher GH: Clinical dose response curves of human malignant epithelial tumors. Br J Radiol 1973, 46:151.
  • [25]Onishi H, Shirato H, Nagata Y, Hiraoka M, Fujino M, Gomi K, Niibe Y, Karasawa K, Hayakawa K, Takai Y, Kimura T, Takeda A, Ouchi A, Hareyama M, Kokubo M, Hara R, Itami J, Yamada K, Araki T: Hypofractionated stereotactic radiotherapy (HypoFXSRT) for stage I non-small cell lung cancer: updated results of 257 patients in a Japanese multi-institutional study. J Thorac Oncol 2007, 2(7 Suppl 3):S94-100.
  • [26]Bradley J, Graham MV, Winter K, Purdy JA, Komaki R, Roa WH, Ryu JK, Bosch W, Emami B: Toxicity and outcome results of RTOG 9311: a phase I-II dose escalation study using three-dimensional conformal radiation therapy in patients with inoperable non–small cell lung carcinoma. Int J Radiat Oncol Biol Phys 2005, 61:318-328.
  • [27]Kong FM, Ten Haken RK, Schipper MJ, Sullivan MA, Chen M, Lopez C, Kalemkerian GP, Hayman JA: High-dose radiation improved local tumor control and overall survival in patients with inoperable/unresectable non-small-cell lung cancer: long-term results of a radiation dose escalation study. Int J Radiat Oncol Biol Phys 2005, 63:324-333.
  • [28]Koukourakis M, Hlouverakis G, Kosma L, Skarlatos J, Damilakis J, Giatromanolaki A, Yannakakis D: The impact of overall treatment time on the results of radiotherapy for nonsmall cell lung carcinoma. Int J Radiat Oncol Biol Phys 1996, 34:315-322.
  • [29]Timmerman R, Paulus R, Galvin J, Michalski J, Straube W, Bradley J, Fakiris A, Bezjak A, Videtic G, Johnstone D, Fowler J, Gore E, Choy H: Stereotactic body radiation therapy for inoperable early stage lung cancer. JAMA 2010, 303:1070-1076.
  • [30]Timmerman R, McGarry R, Yiannoutsos C, Papiez L, Tudor K, DeLuca J, Ewing M, Abdulrahman R, DesRosiers C, Williams M, Fletcher J: Excessive toxicity when treating central tumors in a phase II study of stereotactic body radiation therapy for medically inoperable early-stage lung cancer. J Clin Oncol 2006, 24:4833-4839.
  • [31]Thirion P, Holmberg O, Collins CD, O'Shea C, Moriarty M, Pomeroy M, O'Sullivan C, Buckney S, Armstrong J: Escalated dose for non-small-cell lung cancer with accelerated hypofractionated three-dimensional conformal radiation therapy. Radiother Oncol 2004, 71:163-166.
  • [32]Zhu ZF, Fan M, Wu KL, Zhao KL, Yang HJ, Chen GY, Jiang GL, Wang LJ, Zhao S, Fu XL: A phase II trial of accelerated hypofractionated three-dimensional conformal radiation therapy in locally advanced non-small cell lung cancer. Radiother Oncol 2011, 98:304-308.
  • [33]Ohri N, Dicker AP, Lawrence YR: Can drugs enhance hypofractionated radiotherapy? A novel method of modeling radiosensitization using in vitro data. Int J Radiat Oncol Biol Phys 2012, 83:385-393.
  • [34]Belderbos J, Uitterhoeve L, van Zandwijk N, Belderbos H, Rodrigus P, Van de Vaart P, Price A, Van Walree N, Legrand C, Dussenne S, Bartelink H, Giaccone G, Koning C, EORTC LCG and RT Group: Randomised trial of sequential versus concurrent chemo-radiotherapy in patients with inoperable non-small cell lung cancer (EORTC 08972–22973). Eur J Cancer 2007, 43:114-121.
  • [35]Maguire J, McMenemin R, O’Rourke N: SOCCAR: Sequential or concurrent chemotherapy and hypofractionated accelerated radiotherapy in inoperable stage III NSCLC. J Clin Oncol 2011, 29(suppl; abstr 7039):462s.
  • [36]Carruthers R, O'Rourke N, Mohammed N, Hicks J, Brisbane : Toxicity of hypofractionated accelerated radiotherapy concurrent with chemotherapy for non-small cell carcinoma of the lung. Clin Oncol (R Coll Radiol) 2011, 23:561-562.
  • [37]Cho KH, Ahn SJ, Pyo HR, Kim KS, Kim YC, Moon SH, Han JY, Kim HT, Koom WS, Lee JS: A Phase II study of synchronous three-dimensional conformal boost to the gross tumor volume for patients with unresectable Stage III non-small-cell lung cancer: results of Korean Radiation Oncology Group 0301 study. Int J Radiat Oncol Biol Phys 2009, 74:1397-1404.
  文献评价指标  
  下载次数:5次 浏览次数:22次