Molecular Neurodegeneration | |
Deep brain stimulation-associated brain tissue imprints: a new in vivo approach to biological research in human Parkinson’s disease | |
Pierre R. Burkhard5  François Berger6  Michel Dubois-Dauphin3  Johannes A. Lobrinus2  Eric Seigneuret4  Michèle El Atifi8  Stephan Chabardès7  Ali Bouamrani8  Affif Zaccaria1  | |
[1] Centre Medical Universitaire (CMU), Rue Michel Servet 1, Genève 4, CH-1211, Switzerland;Department of Pathology, Geneva University Hospitals, Geneva, Switzerland;Department of Pathology and Immunology, University Medical Center, Faculty of Medicine, Geneva, Switzerland;Clinique de neurochirurgie, CHU de Grenoble, Grenoble, France;Department of Neurology, Geneva University Hospitals, Geneva, Switzerland;Inserm UA01, Clinatec, Edmond J. Safra Biomedical Research Center, CEA, Grenoble CHU, Univ. Grenoble Alpes, Grenoble, France;Inserm, U836, Grenoble Institut des Neurosciences, Univ. Grenoble Alpes, Grenoble, France;CEA-LETI, Clinatec, Edmond J. Safra Biomedical Research Center, Grenoble, France | |
关键词: Poly-omic approaches; Histological analysis; Brain Tissue Imprint; Deep Brain Stimulation; Parkinson’s disease; | |
Others : 1235768 DOI : 10.1186/s13024-016-0077-4 |
|
received in 2015-09-21, accepted in 2016-01-20, 发布年份 2016 |
【 摘 要 】
Background
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) or the internal segment of the globus pallidus (GPi) has been established as a highly effective symptomatic therapy for Parkinson’s disease (PD). An intriguing biological aspect related to the DBS procedure is that a temporary contact establishes between surgical instruments and the surrounding brain tissue. In this exploratory study, we took advantage of this unique context to harvest brain material adhering to the stylet routinely used during surgery, and to examine the biological value of these samples, here referred to as “brain tissue imprints” (BTIs).
Results
Nineteen BTIs from 12 STN- or GPi-electrode implanted patients were obtained in vivo during DBS surgery, without any modification of the surgical procedure. Immunofluorescence analyses confirmed that our approach allowed the harvesting of many neural cells including neurons harboring distinct neurotransmitter markers. Shotgun proteomic and transcriptomic analyses provided for the first time molecular information from DBS-associated brain samples, and confirmed the compatibility of this new type of sample with poly-omic approaches. The method appears to be safe and results consistent.
Conclusions
We here propose BTIs as original and highly valuable brain samples, and DBS-related brain imprinting as a new conceptual approach to biological research in living patients with PD.
【 授权许可】
2016 Zaccaria et al.
Files | Size | Format | View |
---|---|---|---|
Fig. 5. | 58KB | Image | download |
Fig. 4. | 27KB | Image | download |
Figure 2. | 135KB | Image | download |
Fig. 2. | 222KB | Image | download |
Fig. 1. | 60KB | Image | download |
Fig. 5. | 58KB | Image | download |
Fig. 4. | 27KB | Image | download |
Fig. 3. | 45KB | Image | download |
Fig. 2. | 222KB | Image | download |
Fig. 1. | 60KB | Image | download |
【 图 表 】
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 1.
Fig. 2.
Figure 2.
Fig. 4.
Fig. 5.
【 参考文献 】
- [1]Lang AE, Lozano AM. Parkinson’s disease. First of two parts. N Engl J Med. 1998; 339(15):1044-53.
- [2]Lang AE, Lozano AM. Parkinson’s disease. Second of two parts. N Engl J Med. 1998; 339(16):1130-43.
- [3]Samii A, Nutt JG, Ransom BR. Parkinson’s disease. Lancet. 2004; 363(9423):1783-93.
- [4]Olanow CW, Tatton WG. Etiology and pathogenesis of Parkinson’s disease. Annu Rev Neurosci. 1999; 22:123-44.
- [5]Potashkin JA, Blume SR, Runkle NK. Limitations of animal models of Parkinson’s disease. Parks Dis. 2010; 2011:658083.
- [6]Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature. 2006; 443(7113):787-95.
- [7]McNaught KS, Olanow CW, Halliwell B, Isacson O, Jenner P. Failure of the ubiquitin-proteasome system in Parkinson’s disease. Nat Rev Neurosci. 2001; 2(8):589-94.
- [8]Licker V, Burkhard PR. Neuroproteomics and Parkinson’s disease: don’t forget human samples. Expert Rev Proteomics. 2011; 8(3):291-4.
- [9]Nalls MA, Plagnol V, Hernandez DG, Sharma M, Sheerin UM et al.. Imputation of sequence variants for identification of genetic risks for Parkinson’s disease: a meta-analysis of genome-wide association studies. Lancet. 2011; 377(9766):641-9.
- [10]Nalls MA, Pankratz N, Lill CM, Do CB, Hernandez DG, Saad M et al.. Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson’s disease. Nat Genet. 2014; 46(9):989-93.
- [11]Cooper-Knock J, Kirby J, Ferraiuolo L, Heath PR, Rattray M, Shaw PJ. Gene expression profiling in human neurodegenerative disease. Nat Rev Neurol. 2012; 8(9):518-30.
- [12]Zhang J, Keene CD, Pan C, Montine KS, Montine TJ. Proteomics of human neurodegenerative diseases. J Neuropathol Exp Neurol. 2008; 67(10):923-32.
- [13]Caudle WM, Bammler TK, Lin Y, Pan S, Zhang J. Using ‘omics’ to define pathogenesis and biomarkers of Parkinson’s disease. Expert Rev Neurother. 2010; 10(6):925-42.
- [14]Licker V, Kovari E, Hochstrasser DF, Burkhard PR. Proteomics in human Parkinson’s disease research. J Proteome. 2009; 73(1):10-29.
- [15]Ravid R, Ikemoto K. Pitfalls and practicalities in collecting and banking human brain tissues for research on psychiatric and neulogical disorders. Fukushima J Med Sci. 2012; 58(1):82-7.
- [16]Stan AD, Ghose S, Gao XM, Roberts RC, Lewis-Amezcua K, Hatanpaa KJ et al.. Human postmortem tissue: what quality markers matter? Brain Res. 2006; 1123(1):1-11.
- [17]Preece P, Cairns NJ. Quantifying mRNA in postmortem human brain: influence of gender, age at death, postmortem interval, brain pH, agonal state and inter-lobe mRNA variance. Brain Res Mol Brain Res. 2003; 118(1–2):60-71.
- [18]Chariot P, Witt K, Pautot V, Porcher R, Thomas G, Zafrani ES et al.. Declining autopsy rate in a French hospital: physician’s attitudes to the autopsy and use of autopsy material in research publications. Arch Pathol Lab Med. 2000; 124(5):739-45.
- [19]Ferrer I, Santpere G, Arzberger T, Bell J, Blanco R, Boluda S et al.. Brain protein preservation largely depends on the postmortem storage temperature: implications for study of proteins in human neurologic diseases and management of brain banks: a BrainNet Europe Study. J Neuropathol Exp Neurol. 2007; 66(1):35-46.
- [20]Tomita H, Vawter MP, Walsh DM, Evans SJ, Choudary PV, Li J et al.. Effect of agonal and postmortem factors on gene expression profile: quality control in microarray analyses of postmortem human brain. Biol Psychiatry. 2004; 55(4):346-52.
- [21]Benabid AL. Deep brain stimulation for Parkinson’s disease. Curr Opin Neurobiol. 2003; 13(6):696-706.
- [22]Lefranc M, Le Gars D. Robotic implantation of deep brain stimulation leads, assisted by intra-operative, flat-panel CT. Acta Neurochir. 2012; 154(11):2069-74.
- [23]Jimenez-Marin A, Collado-Romero M, Ramirez-Boo M, Arce C, Garrido JJ. Biological pathway analysis by ArrayUnlock and Ingenuity Pathway Analysis. BMC Proc. 2009; 3 Suppl 4:S6. BioMed Central Full Text
- [24]Benabid AL, Pollak P, Louveau A, Henry S, de Rougemont J. Combined (thalamotomy and stimulation) stereotactic surgery of the VIM thalamic nucleus for bilateral Parkinson disease. Appl Neurophysiol. 1987; 50(1–6):344-6.
- [25]Benabid AL, Chabardes S, Mitrofanis J, Pollak P. Deep brain stimulation of the subthalamic nucleus for the treatment of Parkinson’s disease. Lancet Neurol. 2009; 8(1):67-81.
- [26]Kumar R, Lang AE, Rodriguez-Oroz MC, Lozano AM, Limousin P, Pollak P et al.. Deep brain stimulation of the globus pallidus pars interna in advanced Parkinson’s disease. Neurology. 2000; 55(12 Suppl 6):S34-9.
- [27]Plaha P, Gill SS. Bilateral deep brain stimulation of the pedunculopontine nucleus for Parkinson’s disease. Neuroreport. 2005; 16(17):1883-7.
- [28]Blandini F, Nappi G, Tassorelli C, Martignoni E. Functional changes of the basal ganglia circuitry in Parkinson’s disease. Prog Neurobiol. 2000; 62(1):63-88.
- [29]Cossette M, Levesque M, Parent A. Extrastriatal dopaminergic innervation of human basal ganglia. Neurosci Res. 1999; 34(1):51-4.
- [30]Schuepbach WM, Rau J, Knudsen K, Volkmann J, Krack P, Timmermann L et al.. Neurostimulation for Parkinson’s disease with early motor complications. N Engl J Med. 2013; 368(7):610-22.
- [31]Perlmutter JS, Mink JW. Deep brain stimulation. Annu Rev Neurosci. 2006; 29:229-57.
- [32]Holtzheimer PE, Mayberg HS. Deep brain stimulation for psychiatric disorders. Annu Rev Neurosci. 2011; 34:289-307.
- [33]Ramayya AG, Zaghloul KA, Weidemann CT, Baltuch GH, Kahana MJ. Electrophysiological evidence for functionally distinct neuronal populations in the human substantia nigra. Front Hum Neurosci. 2014; 8:655.
- [34]Mallet L, Polosan M, Jaafari N, Baup N, Welter ML, Fontaine D et al.. Subthalamic Nucleus Stimulation in Severe Obsessive-Compulsive Disorder. New Engl J Med. 2008; 359(20):2121-34.
- [35]Chabardes S, Kahane P, Minotti L, Koudsie A, Hirsch E, Benabid AL. Deep brain stimulation in epilepsy with particular reference to the subthalamic nucleus. Epileptic Disord. 2002; 4 Suppl 3:S83-93.
- [36]Vercueil L, Pollak P, Fraix V, Caputo E, Moro E, Benazzouz A et al.. Deep brain stimulation in the treatment of severe dystonia. J Neurol. 2001; 248(8):695-700.
- [37]Shahed J, Poysky J, Kenney C, Simpson R, Jankovic J. GPi deep brain stimulation for Tourette syndrome improves tics and psychiatric comorbidities. Neurology. 2007; 68(2):159-60.
- [38]Benabid AL, Pollak P, Gervason C, Hoffmann D, Gao DM, Hommel M et al.. Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus. Lancet. 1991; 337(8738):403-6.
- [39]Gluck F, Hoogland C, Antinori P, Robin X, Nikitin F, Zufferey A et al.. EasyProt--an easy-to-use graphical platform for proteomics data analysis. J Proteome. 2013; 79:146-60.